
Emergence of complexity in opinion propagation:
A reaction-diffusion model

Romain Ducasse1 and Samuel Tréton2

Abstract
We analyze a model designed to describe the spread and accumulation of opinions in a

population. Inspired by the social contagion paradigm, our model is built on the classical
SIR model of Kermack and McKendrick and consists in a system of reaction-diffusion
equations. In the scenario we consider, individuals within the population can adopt new
opinions via interactions with others, following some simple rules. The individuals can
gradually adopt more complex opinions over time.

Our main result is the characterization of a maximal complexity of opinions that can
persist and propagate. In addition, we show how the parameters of the model influence
this maximal complexity. Notably, we show that it grows almost exponentially with the
size of the population, suggesting that large communities can foster the emergence of more
complex opinions.
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1 Introduction

1.1 Motivation: the spread of ideas and opinions

The mathematical modeling of the propagation of ideas, opinions, rumors, knowledge, or other
“social traits” has been envisioned since at least the 18th century [34]. The concept of social
contagion is a paradigm used to model such phenomena: building on an analogy between
the spread of contagious diseases and of ideas, several authors used modified epidemiological
models to study social phenomenon as diverse as the spread of information in a network [37],
the diffusion of innovations [2, 7, 11] or the outbreaks of riots [8, 9].

The key idea behind the analogy in the social contagion paradigm is that the adoption of
a new opinion by an individual occurs via interactions with others, much like the transmission
of a disease through physical contact. While this analogy has several limitations (e.g., the
adoption of a new opinion can be a conscious act, may require repeated voluntary interactions,
or involve active efforts), it remains compelling for two reasons. First, it offers mathematicians
a range of new models that exhibit behaviors not observed in traditional epidemiological or
biological models. Second, these models facilitate quantitative analysis, enabling comparisons
with real-world data; see, for instance, [7, 8].

Most models in the literature focus on the spread of a single opinion. However, the
capacity of human populations to accumulate opinions and ideas is widely recognized as a
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key factor in the evolution of ideologies. For sociological insights on this topic, see [32] and
references therein.

In this paper, we introduce and analyze a reaction-diffusion model that describes the
spread of opinions1 within a population, where individuals can gradually adopt increasingly
complex opinions over time. We focus on the following questions: How do different opinions
propagate? And is there a limit to the complexity of opinions that can spread?

To formalize our approach, we introduce a general reaction-diffusion model presented
below as equation (1.1), which is built on the following hypotheses:

1. The set of all possible opinions is discrete and indexed by N.

2. We consider a closed population: no births or deaths occur within the time scales we
consider.

3. The model incorporates a spatial structure: the population is distributed across a do-
main referred to as “space”. This space may represent a geographic region where the
population resides or a social network through which individuals interact. For simplicity,
we assume that the space is the entire real line R.

4. Each individual can exist in one of two states:

• Quiet state: the individual remains static and is receptive to adopting new opinions
from others.

• Excited state: the individual is moving and capable of transmitting its own opinion
to others.

We denote by Sn(t, x) and In(t, x) the densities of quiet and excited individuals, respec-
tively, holding opinion n ∈ N at time t > 0, and located at point x ∈ R.2

5. When a quiet individual with opinion n encounters an excited one with opinion k, the
quiet individual may change its opinion from n to k. We model this process using
a law of mass action, assuming that the rate of this opinion adoption at time t and
location x is given by α(k, n)Ik(t, x)Sn(t, x), where α(k, n) ≥ 0 represents the likelihood
of opinion transmission. If α(k, n) = 0, it indicates that opinion k cannot be adopted
by individuals with opinion n.

6. Once a quiet individual adopts a new opinion, it transitions to the excited state. He can
then move and transmit its new opinion to the quiet individuals he would meet. This
excited state persists for a certain duration before the individual returns to the quiet
state. We denote µn > 0 the rate at which an individual holding opinion n ceases to
be excited and reverts to the quiet state. Consequently, the average duration that an
excited individual with opinion n remains active in promoting its newly adopted idea
is given by 1/µn.

1We use the terms opinions and ideas interchangeably. A more precise term might be social trait, referring
to a value transmitted between individuals through social interactions. This concept is related to the notion
of meme, introduced by Dawkins in [12].

2The choice of the letters S and I is explained later in Section 1.3, and comes from the analogy with
epidemiological (Susceptible-Infected-Recovered) models.
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Figure I — Illustration of the opinion transmission process described in the items 4.-5.-6. above.

7. When individuals are in the excited state, they move randomly in space, following
independent Brownian motions. This movement is modeled using Laplace operators at
the macroscopic scale, driving the spatial propagation of opinions.3.

Finally, we define the opinion graph G as the directed graph whose nodes are the elements
of N (representing the opinions) and whose edges are {(n, k) ∈ N2 : α(k, n) > 0}. This means
that an ordered pair of nodes (n, k) is connected if and only if the opinion k can be adopted
by individuals having the opinion n.

By expressing this in the form of equations, we arrive at the following system:
∂tSn = −

(∑
k∈N

α(k, n)Ik

)
Sn + µnIn, n ∈ N, t > 0, x ∈ R,

∂tIn = dn∆In +
(∑

k∈N
α(n, k)Sk

)
In − µnIn, n ∈ N, t > 0, x ∈ R.

(1.1)

This model is rather general, and without further assumptions on the graph G , it can exhibit
many different behaviors. In the present paper, we focus our study on the phenomenon
of accumulation of opinions rather than on the process of diversification: to do so, we shall
assume some specific shape on the graph G that we explain just after. For now, let us mention
that the model (1.1) was studied in two situations:

• When the opinion graph G is made of two nodes, that is, when there are only two
opinions, say 0 and 1, and the individuals with opinion 0 can adopt the opinion 1. This
situation is equivalent to the classical SIR model of Kermack and McKendrick [27], we
detail this in Section 1.3, as it will greatly help to build the intuition for our case.

Figure II — An example of the opinion graph G for the original SIR model.

3Alternative approaches incorporate nonlocal interactions instead of individual diffusion [13, 14]. We reserve
the exploration of such insights for future works.
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• When the opinion graph G is a tree made of one “root node” (say 0), and N “leaf nodes”
connected to 0 — see Figure III below. This represents the situation where there is one
“neutral” opinion (which cannot be transmitted), while the N other opinions can only
be transmitted to individuals holding the neutral opinion. In this configuration, the N
different opinions are in competition. The first author showed in [15] that this model
exhibits a selection phenomenon: only a subset of all the possible opinions spreads.

Figure III — An example of the opinion graph G for the competition of N opinions.

In this paper, we study a new instance of (1.1) focused on the accumulation of opinions, by
assuming a specific structure on the opinion graph G — see Figure IV below.

1.2 The model we consider

Considering a general opinion graph G in (1.1) leads to rather complex behaviors. A first nat-
ural restriction is to consider acyclic graph, that is, graphs that contain no loops. Mathemati-
cally, this means that for any sequence of integer (n1, · · · , np) ∈ Np, we have α(n1, n2)α(n2, n3)
· · · α(np−1, np)α(np, n1) = 0. This is verified in the two situations mentioned above.

We focus here on the situation where the opinion graph G is N where the oriented edges
are the couples of adjacent points (n, n + 1) — see Figure IV below. In this setting, an
individual can only adopt opinion n if it holds the previous opinion n − 1. Consequently, the
integer n serves as a measure of the opinion’s complexity: the higher n, the harder it becomes
for an individual to acquire opinion n, as it must have acquired all prerequisite opinions 1, 2,
· · · , n − 1 beforehand. We see the first opinion n = 0 acts as a “basis” opinion, and assume
that all individuals possess this opinion initially.

Figure IV — The opinion graph G for the accumulation of opinions.

This setting boils down to assuming, in the general system (1.1), that α(k, n) = αkδk=n+1,
where αk > 0: only excited individuals with opinion n + 1 may transmit their opinion with
individuals with opinion n.

We are thus led to the following system, which constitutes the main focus of this paper:
∂tS0 = −α1S0I1, t > 0, x ∈ R, (1.2a)

∂tIn = dn∆In + αnSn−1In − µnIn, n ∈ N⋆, t > 0, x ∈ R, (1.2b)
∂tSn = −αn+1SnIn+1 + µnIn, n ∈ N⋆, t > 0, x ∈ R. (1.2c)

The basis opinion n = 0 (the simplest one) cannot be transmitted to other individuals, so
there is no need to consider an excited state for n = 0. For this reason, we do not consider
any function I0(t, x).
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This model is specifically designed to focus on the mechanisms of accumulation, or com-
plexification of opinions. We believe that, combining the results of the present paper with the
results of [15], one would be able to treat the case where the opinion graph G is a general
acyclic oriented graph.

The dynamics of the model are depicted in Figure V below. Initially, all the quiet indi-
viduals have opinion n = 0 and reside in the S0 compartment. When a quiet individual with
opinion n = 0 encounters an excited individual with opinion n = 1, the quiet individual can
adopt opinion n = 1 and transitions from compartment S0 to I1. This transition occurs at a
rate α1S0I1. Once in the I1 compartment, these newly excited individuals remain active for
an average duration of 1/µ1, after which they move to the quiet state in compartment S1,
now holding opinion n = 1.

The process then continues as such, when a quiet individual with opinion n meets with an
excited having opinion n+1, he adopts the opinion n+1, i.e. it transitions from compartment
Sn to In+1 with rate αn+1SnIn+1, resulting in the gradual accumulation of opinions.

Note that interactions only occur between individuals having opinions separated by one
degree of complexity (for instance, quiet individuals holding opinion n = 1 cannot directly
adopt the more complex opinion n = 3).

Figure V — Evolution of the population by transitions through the opinion compartments.

One of the main questions is the following:

What is the maximal complexity that the population can achieve?

More precisely, starting from a population where all the individuals have the opinion n = 0,
will we see the emergence of individuals with opinion n = 1, 2, 3, etc.? If yes, up to which
complexity?

Our main result, Theorem 2.4, completely describes the long-time behavior of the system,
and tells us exactly which opinions spread, and with which speed (we define this notion below).
In particular, depending on the parameters of the system, we give a way to compute the
maximal complexity that will be reached by the population, that we denote N⋆ ∈ N∪ {+∞}.
Although the expression of N⋆ is implicit, we give in Theorem 2.5 some qualitative properties
of N⋆, seen as a function of the system’s parameters.

The dynamical system (1.2) must be supplemented with initial conditions, representing
the initial distribution of opinions within the population. At initial time t = 0, we assume
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that only the basic opinion n = 0 is represented. Specifically, we set

S0(t = 0, x) ≡ S⋆
0 ∈ R+, and Sn(t = 0, x) ≡ 0, ∀n ∈ N⋆.

Here, S⋆
0 is a nonnegative constant, reflecting a uniform distribution of individuals across

space.
To trigger the dynamics, we introduce some small perturbations by adding a limited quan-

tity of excited individuals for each opinion. We set

In(t = 0, x) = I0
n(x), ∀n ∈ N⋆,

where the functions I0
n : R → R are continuous, non-negative, non-zero and compactly sup-

ported. We then investigate which of these perturbations can persist and propagate.
We summarize this initial condition as

S0|t=0 ≡ S⋆
0 ∈ R+, x ∈ R,

Sn|t=0 ≡ 0, n ∈ N⋆, x ∈ R,

In|t=0 = I0
n, n ∈ N⋆, x ∈ R.

(1.3)

1.3 Background: the SIR reaction-diffusion model

As we mentioned earlier, both the general system (1.1) and the particular one (1.2) studied in
this paper are inspired by mathematical epidemiology, particularly by the SIR (Susceptible-
Infected-Recovered) model introduced by Kermack and McKendrick [27]. In this section, we
present the SIR model together with some related results, as it helps to build intuition and
fix the notations for our model.

The SIR model describes the spread of a disease in a population, where individuals are
divided into three compartments (hence the term compartmental models):

• The susceptibles: they do not have the disease but are at risk of catching it.

• The infected: they are currently infected and can transmit the disease.

• The recovered: they have recovered from the disease and are immune, meaning they
cannot be reinfected (no waning of immunity).

The density of susceptibles, infected and recovered at time t > 0 and position x ∈ R are
denoted S(t, x), I(t, x), and R(t, x), respectively. When an infected individual encounters a
susceptible, the susceptible can become infected according to a law of mass action, that is at
a rate αSI, where α > 0 represents the likelihood of transmission. Infected individuals then
recover at a constant rate µ > 0.

Although the original SIR model did not account for spatial dynamics, this aspect was
later incorporated by several authors. The extension of interest here is the one by Källen [26],
who assumed that the infected individuals, and only them, diffuse with a diffusivity constant
rate d > 0. This leads to the following system:

∂tS = −αSI, t > 0, x ∈ R,

∂tI = d∆I + αSI − µI, t > 0, x ∈ R,

∂tR = µI, t > 0, x ∈ R.

(1.4)
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Remark 1.1 In [26], the author chose not to include diffusion term on S in (1.4), a decision
driven by modeling considerations. When there is such a diffusion term, the analysis is more
complex, and some points are still open, we refer to [17] for more details on this topic.

Here, we follow the same formalism as in the model of Källen: the quiet individual do not
diffuse in our model (1.2), only the excited ones.

Observe that up to renaming S as S0, I as I1 and R as S1, the SIR system (1.4) is
equivalent to our model (1.2), in the particular case where there are only two opinions. In
other words, the SIR model is the simplest instance of the general model (1.2).

The SIR system (1.4) is completed with initial datum (S0(x), I0(x), R0(x)), which repre-
sents the initial spatial distribution of each group of individuals. We assume S0(x) ≡ S⋆ ∈ R+,
which means that the susceptibles are initially uniformly distributed across space at the initial
time. Next, we assume I0 is non-negative, non-zero, continuous and compactly supported,
reflecting the fact that at the initial time, there are only a few infected individuals, and they
are localized in space (in the initial focus of infection). Finally, we set R0(x) ≡ 0; while not
necessary, this assumption is natural: at the initial time, no one has recovered yet, as the
infection is just beginning.

The main result concerning the SIR system (1.4) is the existence of a threshold effect. Let
S∞(x) := limt→+∞ S(t, x), representing the final density of susceptibles that remain unaffected
after the epidemic, and define the basic reproduction number R0 := α

µ S⋆.

• If R0 ≤ 1, the disease fades away in the sense that

S∞(x) −→
|x|→+∞

S⋆,

that is, the final density of susceptible is equal to the initial density, at least for large
|x|. Hence the disease did not spread. Observe that only the large values of |x| matter:
near the initial focus of infection (the support of I0), some contamination are inevitable,
and S∞ may even be very low in this region, even if the disease does not spread.

• If R0 > 1, the disease spreads in the sense that there is S† ∈ (0, S0) such that

sup
|x|>δ

|S∞(x) − S†| −→
δ→+∞

0,

meaning that the density of susceptible is strictly smaller than the initial density, even
far from the initial focus of infection. This indicates that the disease has spread.
The value S† is solution of a transcendental equation — see below for further details.

It turns out that we can refine the previous result. When R0 > 1, we can characterize the
spreading speed of the epidemic. Define

c⋆ = 2
√

d(αS⋆ − µ) ,

then
sup

ct<|x|
|S − S⋆| −→

t→+∞
0, for all c > c⋆,

and
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sup
δ<|x|<ct

|S − S†| −→
δ,t→+∞

0, for all c ∈ (0, c⋆).

The first equation implies that the disease does not spread faster than c⋆: an observer moving
in one direction with speed c > c⋆ will eventually see around him a density of susceptible
equal to the initial value S⋆, meaning the population there remains unaffected there.

Conversely, the second equation shows that the disease propagates at least as fast as c⋆:
an observer moving at speed c < c⋆ will observe around him a density of susceptible equal
to S† (which is strictly smaller than S⋆), meaning the population has already been affected
before the observer arrives. Thus, the disease spreads faster than the observer. We say that
the function S(t, x) connects S⋆ to S† with spreading speed c⋆.

The propagation of the epidemic is illustrated in Figure VI below, which depicts the
situation at some time t > 0: the population of susceptibles forms two interfaces, while the
infected population forms two bumps, both traveling left and right at speed c⋆. Meanwhile,
the recovered population forms a front traveling at the same speed.

Figure VI — The SIR reaction-diffusion model in the case of propagation of the disease (R0 > 1).

Let us explain how these results are derived, as it will provide insight into the upcoming
proofs. The key idea is to observe that the function R satisfies the equation

∂tR = d∆R + µS⋆(1 − e
− α

µ
R) − µR + µI0, t > 0, x ∈ R. (1.5)

This comes from the following computations. First, observe that we can integrate the equation
for S in (1.4) to obtain

S(t, x) = S⋆e
− α

µ
R(t,x)

.

Substituting this in the equation for I, we get

∂tI = d∆I + αS⋆e
− α

µ
R(t,x)

I − µI.

Now, multiplying by µ and using the fact that ∂tR = µI yields

∂ttR = d∂t∆R + αS⋆e
− α

µ
R(t,x)

∂tR − µ∂tR.

By integrating over t, we arrive at equation (1.5).
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Equation (1.5) is a reaction-diffusion equation whose reaction term

f(z) = µS⋆(1 − e
− α

µ
z) − µz

is concave. Such equations are referred to as KPP reaction-diffusion equation, named af-
ter Kolmogorov, Petrovski and Piskunov, who studied them in [30]. They proved that, if
f ′(0) > 0, then the solution of the equation propagates toward the unique positive stationary
equilibrium of the equation at speed 2

√
df ′(0) . In our case, f ′(0) = αS⋆ − µ, which gives the

desired result.
For further details on reaction-diffusion equations, we refer to [1, 30]. A standard ap-

proach to prove these results involves comparing the solution R of (1.5) with subsolutions
and supersolutions, which is the main strategy we employ in this paper.

2 Notations and main results

Before stating our results, in order to justify our notations, we give a heuristic explanation
of the dynamics of our system (1.2). In Figure VIII, we represent a typical snapshot of the
functions S0, I1, S1, I2, etc., with each function displayed on a separate graph for clarity.
For simplicity, we only depict the right-hand side of the space, as the situation on the left is
symmetric.

At initial time, all individuals are quiet and have opinion n = 0 — i.e. they are all in
the compartment S0. Then, we consider small perturbations. Specifically, for each n ∈ N⋆, a
small group of localized excited individuals with opinion n is introduced, with their densities
denoted by I0

n.

Let us start to have a look at the the equations governing the populations S0, I1, S1:


∂tS0 = −α1S0I1, t > 0, x ∈ R,

∂tI1 = d1∆I1 + α1S0I1 − µ1I1, t > 0, x ∈ R,

∂tS1 = µ1I1 − α2S1I2, t > 0, x ∈ R.

(2.1)

This system looks like the SIR model, where S0, I1, S1 play the role of the susceptible,
infected and recovered respectively, but with a removal term −α2S1I2. If we disregard this
removal term, it is natural to expect, similarly to the SIR system (see subsection 1.3), that
when the basic reproduction number R1 := α1

µ1
S⋆

0 exceeds 1, the density S0(t, x) will decrease
from its initial value S⋆

0 towards some value S†
0 > 0. This decrease is expected to occur

by the formation of an interface that moves to the right and to the left at a speed c1 :=
2
√

d1(α1S⋆
0 − µ1) , as illustrated in the first line of Figure VIII. Meanwhile, the function I1

forms a traveling bump that propagates at the same speed, shown in the second line of the
figure.

As I1 propagates and becomes quiet, the population S1 emerges, forming a front that
connects 0 to some value S⋆

1 , as shown in the third line of Figure VIII. However, unlike in the
SIR system, the S1 individuals can still be “contaminated” by the I2 population afterwards.
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At the initial time t = 0, there is no population S1. As a result, the population I2 has
no one to influence, so it simply decays and does not propagate. However, as the population
S1 begins to emerge, the population I2 will find individuals to convince. More precisely, if
we wait long enough for S1(t, x) to grow towards S⋆

1 over a sufficiently large region, then the
population I2 will encounter a local concentration of S⋆

1 individuals (with opinion n = 1) to
transmit its opinion n = 2.

We can then expect that if the new basic reproduction number R2 := α2
µ2

S1⋆ is strictly
greater than 1, then the population I2 will propagate — as shown in the fourth line of
Figure VIII — with some speed c2 := 2

√
d2(α2S⋆

0 − µ2) . As this happens, the number of
individuals holding opinion n = 1 will decrease: after initially increasing due to the propaga-
tion of I1, the density S1(t, x) will decline and stabilize at a new value S†

1, with the interface
moving at speed c2. This is depicted in the third line of Figure VIII, where S1 first increases
towards a plateau S⋆

1 , approximately in the region (c2t, c1t), and then decreases to a new
plateau S†

1 in the zone (0, c2t). We see here that it is natural to assume that c2 < c1, as
otherwise the left-moving interface would catch up with the right-moving one, leading to a
degenerate situation.

As the population I2 propagates and becomes quiet, the population S2 emerges, forming
a front that propagates at speed c2, as shown in the fifth line of Figure VIII. This emergence
then gives the opportunity to the I3 population to propagate, leading to the appearance of
S3, and this process continues in the same manner.

If the basic reproduction number Rn+1 := αn+1
µn+1

S⋆
n is strictly larger than 1, this enables

the population In+1 to propagate and spread at speed cn+1 := 2
√

dn+1(αn+1S⋆
n − µn+1) . As

a result, Sn(t, x) will decrease as In+1 propagates: for |x| < cn+1t, Sn(t, x) is expected to
converge to some S†

n+1, while in the region |x| ∈ (cn+1t, cnt), we should have Sn(t, x) ≈ S⋆
n.

The dynamics of Sn are illustrated in Figure VII.

Figure VII — Asymptotic shape of Sn in the case of propagation (n ∈ J1, N⋆K). The limits (i), (ii)
and (iii) refer to those of Theorem 2.4.

The dynamics may stop at some value of n. Suppose there exists a rank, denoted by N⋆, such
that the basic reproduction number RN⋆+1 = αN⋆+1

µN⋆+1
S⋆

N⋆ is less than or equal to 1. Drawing
from the intuition developed from the SIR model, it is natural to think that the population
IN⋆+1 will not propagate.

As a result, the population SN⋆ will converge towards some S⋆
N⋆ but, since it will not be

affected by IN⋆+1, it will not experience a decay at the rear. Instead, it will form a simple
front, as depicted in the last line of Figure VIII. Consequently, all opinions with indices larger
than N⋆ + 1 will also fail to propagate.
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Figure VIII — Typical propagation dynamics generated by system (1.2).

The above heuristics lead us to introduce the following notations.

Definition 2.1 (Propagation sequences) Let S⋆
0 and (dn, αn, µn)n∈N⋆ be fixed and strictly

positive.
We define N⋆ ∈ N ∪ {+∞} and the propagation sequences (S⋆

n)n∈J0,N⋆K, (cn)n∈J1,N⋆K,
and (S†

n)n∈N as follows.

For each n ∈ N such that S⋆
n is defined (n = 0 is given by S⋆

0), consider the basic
reproduction number

Rn+1 := αn+1
µn+1

S⋆
n.

• If Rn+1 ≤ 1, the sequence terminates and we set N⋆ := n.

• If Rn+1 > 1, we set S⋆
n+1 to be the the unique positive solution to

S⋆
n

(
1 − e

− αn+1
µn+1

S⋆
n+1
)

= S⋆
n+1. (2.2)



12 Emergence of Complexity in Opinion Propagation

If the sequence (S⋆
n)n is not finite, we set N⋆ = +∞. In addition, we define

cn := 2
√

dn(αnS⋆
n−1 − µn) , for n ∈ J1, N⋆K,

and

S†
n :=


S⋆

n − S⋆
n+1 if n ∈ J0, N⋆ − 1K,

S⋆
n if n = N⋆,

0 if n > N⋆.

Using these notations, we can state our main result, which requires, as explained above, the
following assumption.

Assumption 2.2 The sequence (cn)n∈J1,N⋆K is strictly decreasing.

Remark 2.3 Assumption 2.2 is automatically satisfied if all the parameters (dn, αn, µn)n∈N
are independent of n — i.e. (dn, αn, µn) = (d, α, µ) for any n. From a modeling perspective,
this assumption is quite natural as it implies that more complex opinions propagate slower.

We are now in position to state our main result. For the sake of readability, in the next
theorem, we define c0 = +∞ and cN⋆+1 = 0 (when N⋆ is finite).

Theorem 2.4 (Long-term behavior of system (1.2))
Let (S0, (In, Sn)n∈N⋆) be the solution to (1.2)-(1.3) and assume that S⋆

0 and
(dn, αn, µn)n∈N⋆ are such that Assumption 2.2 holds. Then we have

• Propagation of the N⋆ first opinions: for all ε > 0,

sup
|x|>(cn+ε)t

|Sn(t, x)| −→
t→+∞

0, ∀n ∈ J1, N⋆K, (i)

sup
(cn+1+ε)t<|x|<(cn−ε)t

|Sn(t, x) − S⋆
n| −→

t→+∞
0, ∀n ∈ J0, N⋆K, (ii)

sup
δ<|x|<(cn+1−ε)t

|Sn(t, x) − S†
n| −→

δ,t→+∞
0, ∀n ∈ J0, N⋆ − 1K. (iii)

• Vanishing of any opinion with complexity strictly higher than N⋆:

sup
δ<|x|

sup
t>0

|Sn(t, x)| −→
δ→+∞

0, ∀n > N⋆. (iv)

This result confirms that the above heuristic is valid. Let us state some remarks.

• N⋆ ∈ N∪ {+∞} represents the maximal complexity of the opinion that can be adopted
by the population.

• If N⋆ = 0, it means that no opinion propagates. In this case, the sequence (S⋆
n)n consists

of only one element, the sequences (S†
n)n is empty, and only the lines (ii) (with c0 = +∞

and c1 = 0) and (iv) need to be considered.
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• The propagation of the populations Sn varies depending on whether n = 0, n ∈ J2, N⋆ −
1K, or n = N⋆. When n = 0, the population S0 transitions from a non-zero value S⋆

0
to another value S†

0. For n ∈ J2, N⋆ − 1K, Sn connects 0 to some state S⋆
n, and then to

another state S†
n. Finally, for n = N⋆, the population SN⋆ connects 0 to some S⋆

N⋆ .

• We set cN⋆+1 = 0 to ensure that equation (ii) remains valid. However, this can be
refined, as we will actually prove:

sup
δ<|x|<(cn−ε)t

|SN⋆(t, x) − S⋆
N⋆ | −→

δ,t→+∞
0.

• A consequence of the theorem is that limt→+∞ Sn(t, x) ≈ S†
n, at least for large |x|.

This means that S†
n represents the number of individuals who eventually settle for the

opinion n.

An important interest of models such as the one considered here is that one can hope to
obtain qualitative properties. In this paper, we are particularly interested in understanding
the relationship between the maximal complexity, the size of the population and the strength
of the interactions. To do so, we study how the different parameters of the model influence
N⋆, the maximal complexity4.

Theorem 2.5 (Qualitative properties of the maximal complexity N⋆) Let N⋆ ∈ N ∪
{+∞} be as defined in Definition 2.1.

1 Monotony of N⋆. Let us take two set of parameters S⋆
0 , (dn)n∈N⋆ , (αn)n∈N⋆ , (µn)n∈N⋆

and S⋆
0 , (dn)n∈N⋆ , (αn)n∈N⋆ , (µn)n∈N⋆ such that the hypothesis (2.2) is verified for

each.

If S⋆
0 ≤ S⋆

0 , αn ≤ αn and µn ≥ µn for all n ∈ N⋆, then

N⋆(S⋆
0 , αi, µi) ≤ N⋆(S⋆

0 , αi, µi).

2 Possibility to reach infinite complexity. There are values of the parameters
(dn)n∈N⋆ , (αn)n∈N⋆ , (µn)n∈N⋆ for which N⋆ = +∞. Moreover, for any ε > 0, the
parameters can be chosen such that

lim
n→+∞

S⋆
n ≥ S⋆

0 − ε.

3 Asymptotic expression of N⋆. If the parameters are independent of n, meaning
there exist constants d, α, µ > 0 such that for all n ∈ N, we have dn = d, αn =
α, and µn = µ, then for large initial populations S⋆

0 , the following asymptotic
equivalent holds:

N⋆(S⋆
0) ∼

S⋆
0 →+∞

e
α
µ

S⋆
0

α
µ S⋆

0
. (2.3)

4For clarity, when needed, we emphasize the dependence of N⋆ with respect to the parameters by writing
it as a function of S⋆

0 , (dn)n∈N⋆ , (αn)n∈N⋆ and (µn)n∈N⋆ .
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Let us make some remarks on these points. The first one tells us that the quantity N⋆ is a non-
decreasing function of the initial population S⋆

0 and of the transmission parameters (αn)n∈N⋆

and a non-increasing function of the recovery parameters (µn)n∈N. This is somewhat natural:
the larger the αn, the easier it is for individuals to pass their opinions, the smaller the µn, the
longer they transmit their opinion. The fact that N⋆ is increasing with respect to the size of
the population is also natural: larger populations should indeed establish more connections
and would be capable of sharing more complex opinions (the dependence on the size of the
population is made more explicit in the third point).

The second point indicates that the population can indeed reach opinions with arbitrarily
high complexity, and it is even possible for almost all the initial population to reach arbi-
trarily large opinions. However, as we shall see in the proof, this requires the coefficients
(αn)n∈N⋆ , (µn)n∈N⋆ to be chosen carefully.

Although the maximal complexity N⋆ is an implicit function of the parameters, the third
point tells us that, when the coefficients do not depend on n, N⋆ increases almost exponentially
with the size of the initial population.

This third point can also be expressed using the basic reproduction number R0 = αS⋆
0

µ :

N⋆(R0) ∼
R0→+∞

eR0

R0
.

From the modeling point of view, the rapid growth in complexity predicted by the third
point seems rather natural. One can indeed expect that large populations should create
more interpersonal connections, leading to more interactions, and this should result in higher
complexity and diversity of opinions. We refer to [32] for related discussions.

To illustrate how the initial density S⋆
0 influences the dynamics of the system, let us plot

the graph of the function

(S⋆
0 , n) ∈ R+ × N 7→ S†

n

S⋆
0

.

This quantity represents the asymptotic proportion of individuals holding opinion n, relative
to the initial population size S⋆

0 , or, to state it differently, is represents the proportion of
individuals who eventually adopt the n-th opinion5. Because the total number of individuals
is conserved, we have

∑
n

S†
n

S⋆
0

= 1.

If n ≤ N⋆, the quantity S†
n

S⋆
0

is strictly positive, and for n > N⋆, this quantity is zero (no
individuals adopt these opinions).

In the following graph, the intensity of shaded areas indicates the prevalence of opinion n
within the population in long time — darker shades represent higher proportions.

5See the last point below Theorem 2.4.
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Figure IX — Asymptotic proportion S†
n/S⋆

0 of individuals holding opinion n.

We observe that the maximal opinion complexity N⋆ = N⋆(S⋆
0) corresponds to the highest

point of non-zero proportion along each column (for n ≤ N⋆, the area is gray, while for n > N⋆

the zone is blank). Tracking the curve formed by these maximal points reveals an almost
exponential shape, consistent with the predicted behavior of N⋆ for large S⋆

0 , as described in
the final point of Theorem 2.5 — see (2.3).

3 Proof of Theorem 2.4
The goal of this section is to prove Theorem 2.4. As explained in Section 1.3, the classical
SIR system can be rewritten as a single scalar reaction-diffusion equation for the recovered.
Building on this intuition, we introduce the functions Rn, n ∈ N⋆, defined by ∂tRn = µnIn, t > 0, x ∈ R, (3.1a)

Rn|t=0 ≡ 0, x ∈ R, (3.1b)

and we will study their spreading properties first instead of studying the functions Sn and In.
Unlike for the classical SIR system, the functions Rn will not satisfy a scalar reaction-diffusion
equations, nor a “simple” reaction-diffusion system: they will be be coupled, in a somewhat
implicit fashion. The core of the proof will be to control the influence of each Rn on the
others.

Figure X — Sn vs. Rn.
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Our key result concerning the functions Rn is the following.

Proposition 3.1 (Propagation of Rn) Assume that the hypotheses of Theorem 2.4 hold
true. Then, for every n ∈ J1, N⋆K, we have

sup
ct<|x|

|Rn(t, x)| −→
t→+∞

0, ∀c > cn, (j)

and
sup

δ<|x|<ct
|Rn(t, x) − S⋆

n| −→
δ,t→+∞

0, ∀c ∈ (0, cn). (jj)

This proposition tells us that the function Rn spreads toward S⋆
n with speed cn. The

propagation of the function Rn is similar to the propagation we want to prove on the functions
Sn, except it does not have the decay toward S†

n at the back of the front — see Figure XI.
For this reason, it will be more convenient to work with the functions Rn rather than Sn.

Figure XI — Rn behave like Sn but without the decay toward S†
n at the back of the front.

This section is organized as follows. In Section 3.1, we give some basic estimates on the
functions Rn. In Section 3.2 we show that each Rn satisfies a reaction-diffusion equation up
to some perturbation term. Then, in Section 3.3 we prove Proposition 3.1. Finally, in Section
3.4, we show how Proposition 3.1 implies Theorem 2.4.

3.1 Basic results on the auxiliary functions Rn

We start this section with a remark concerning the function R1.

Remark 3.2 The computations presented in the introduction, at the end of Section 1.3, yield
that R1 satisfies the same reaction-diffusion equation than in the case of the classical SIR
system (the functions S0, I1, R1 actually form a SIR system), that is, we have

∂tR1 = d1∆R1 + f1(R1) + µ1I0
1 , t > 0, x ∈ R.

Therefore, Proposition 3.1 holds true for n = 1. Our proof of Proposition 3.1 will be done by
induction and we shall use this as our base case.

The next lemma explains the relationship between the functions Rn and Sn.

Lemma 3.3 (Controlling Sn with Rn) For all t > 0 and x ∈ R, we have

S⋆
0 e

− α1
µ1

R1(t,x) = S0(t, x) ≤ S⋆
0 , (3.2)

Rn(t, x) e
− αn+1

µn+1
Rn+1(t,x) ≤ Sn(t, x) ≤ Rn(t, x), ∀n ∈ N⋆. (3.3)
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Proof of Lemma 3.3. We start by establishing (3.2). Because S0 and I1 are non-negative,
it follows from (1.2a) that

−α1S0I1 = ∂tS0 ≤ 0, t > 0, x ∈ R.

Dividing this by S0 and using the equation for ∂tR1 from (3.1a), we obtain

−α1
µ1

∂tR1 = ∂tS0
S0

≤ 0.

Now we integrate from 0 to t. Recalling that R1|t=0 ≡ 0, we get

−α1
µ1

R1(t, x) = ln(S0(t, x)) − ln(S⋆
0) ≤ 0,

which directly leads to (3.2).

For n ∈ N⋆, to get the upper bound of Sn, we consider equation (1.2c) where Sn and In+1
are both positive. Using (3.1a), this leads to

∂tSn ≤ µnIn = ∂tRn,

Integrating from 0 to t and using that Sn|t=0 = Rn|t=0 ≡ 0, we get

Sn(t, x) ≤ Rn(t, x) (3.4)

which is the upper bound of Sn as specified (3.3).
To get the lower bound in (3.3), we divide (1.2c) by Sn and use (3.1a) to get

∂tSn

Sn
= −αn+1

µn+1
∂tRn+1 + ∂tRn

Sn
, t > 0, x ∈ R.

Using the upper bound (3.4) on Sn and the positivity of ∂tRn = µnIn, it follows that

∂tSn

Sn
≥ −αn+1

µn+1
∂tRn+1 + ∂tRn

Rn
. (3.5)

We integrate the inequality (3.5) from some small η > 0 to t. This results in

Sn(t, x) ≥ Sn(η, x)
Rn(η, x) × Rn(t, x)e− αn+1

µn+1
Rn+1(t,x)

.

Let us now prove that Sn(η, x)/Rn(η, x) converges to 1 for all x as η goes to zero. By
combining (1.2c) and (3.1a), we obtain

∂tSn = ∂tRn − αn+1SnIn+1.

Integrating from 0 to η and using again that Sn|t=0 = Rn|t=0 ≡ 0, we are led to

Sn(η, x) = Rn(η, x) − αn+1

∫ η

0
Sn(s, x)In+1(s, x)ds,

which can be rearranged as

Sn(η, x)
Rn(η, x) − 1 = αn+1

Rn(η, x)

∫ η

0
Sn(s, x)In+1(s, x)ds. (3.6)



18 Emergence of Complexity in Opinion Propagation

Given the positivity and the upper bound on Sn established in (3.4), as well as the positivity
of ∂tRn = µnIn, we have, for any s ∈ (0, η),

0 ≤ Sn(s, x) ≤ Rn(s, x) ≤ Rn(η, x).

As a result, (3.6) implies that∣∣∣∣Sn(η, x)
Rn(η, x) − 1

∣∣∣∣ ≤ αn+1 × η × sup
s∈(0,η)

|In+1(s, x)|

which vanishes as η approaches 0.

The next lemma shows that Rn satisfies some differential inequality involving Rn−1. In
the Section 3.2, we will improve this result and prove that Rn “almost” satisfies a scalar
reaction-diffusion equation.

Lemma 3.4 (Rn is sub-solution to a perturbed Fisher-KPP equation) For all n ∈ N⋆,
for all t > 0 and x ∈ R, there holds

∂tRn ≤ dn∆Rn + µnRn−1
(
1 − e

− αn
µn

Rn
)

− µnRn + µnI0
n. (3.7)

Proof of Lemma 3.4. The proof relies on a computation similar to the one presented in
Section 1.3 to obtain (1.5): we multiply (1.2b) by µn and using the definition of Rn, (3.1a),
we find

∂ttRn = dn∆∂tRn + µnαnSn−1In − µn∂tRn.

Integrating from 0 to t and recalling that Rn|t=0 ≡ 0, we obtain

∂tRn − µnI0
n = dn∆Rn + µn

∫ t

0
αnSn−1In ds − µnRn. (3.8)

Combining (1.2c) with the definition of Rn, (3.1a), the term under the integral rewrites

αnSn−1In = ∂t(Rn−1 − Sn−1),

so that we have
∂tRn − µnI0

n = dn∆Rn + µn(Rn−1 − Sn−1) − µnRn. (3.9)

Now, using the lower bound (3.3) for Sn given in Lemma 3.3, we find

∂tRn ≤ dn∆Rn + µn

(
Rn−1 − Rn−1 e

− αn
µn

Rn
)

− µnRn + µnI0
n,

which provides (3.7).

A consequence of Lemma 3.4 is that the functions Sn, In, Rn are uniformly bounded.

Lemma 3.5 (Uniform upper bounds on Sn, In and Rn) For all n ∈ N, there is Kn > 0
such that, for all t > 0 and x ∈ R,

Sn(t, x) + In(t, x) + Rn(t, x) ≤ Kn.
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Proof of Lemma 3.5.
• Upper bound on Rn. We argue by induction. If n = 1, then as explained in Remark

3.2, we have ∂tR1 = d1∆R1 + f1(R1) + µ1I0
1 , and R1(0, ) ≡ 0. We can take C1 > 0 such that

0 ≥ f1(C1) + µ1I0
1 , so that C1 is supersolution to the equation that R1 solves. Hence, by the

parabolic comparison principle, R1 ≤ C1.

Now, for n ∈ N⋆, n > 1, assume that there is Cn−1 > 0 such that Rn−1 ≤ Cn−1. Hence,
because Rn satisfies (3.7) from Lemma 3.4, we have

∂tRn ≤ dn∆Rn + µnCn−1(1 − e
− αn

µn
Rn) − µnRn + µnI0

n.

Because I0
n is bounded, using the parabolic comparison principle, we can find then a constant

Cn > 0 large enough to be a supersolution of the above equation. This gives Rn ≤ Cn for all
t > 0 and x ∈ R. By induction, each Rn is therefore uniformly bounded.

• Upper bound on Sn. Combining Lemma 3.3 and the previous point, we have Sn ≤ Rn ≤
Cn for all t > 0 and x ∈ R.

• Upper bound on In. For n ∈ N⋆, we know that In satisfies (1.2b), which is a linear
parabolic equation with bounded coefficients. Therefore, owing to the parabolic Harnack
inequality — see [19, Section 7, Theorem 10] for instance — there is a constant kn > 0 such
that for any t > 1 and any x ∈ R, we have

In(t, x) ≤ kn inf
τ∈[t+1,t+2]

In(τ, x).

Therefore
In(t, x) ≤ kn

∫ t+2

t+1
In(τ, x) dτ ≤ kn

µn
Rn(t + 2, x) ≤ kn

µn
Cn,

hence In is also uniformly bounded.
As explained above, we prove Proposition 3.1 by induction. The induction hypothesis will

be denoted Hn for n ∈ J1, N⋆K and is the following.

Hn :


sup

δ<|x|<ct
|Rn(t, x) − S⋆

n| −−→
δ,t→∞

0, ∀c ∈ (0, cn), (3.10a)

sup
|x|>ct

|Rn(t, x)| −−→
δ,t→∞

0, ∀c ∈ (cn, +∞) . (3.10b)

As observed in Remark 3.2, we already know that Hn holds true for n = 1.
For the sake of clarity, it will useful in some places to adopt the convention that H0 is

a vacuously true hypothesis, meaning it is always satisfied. In other words, when we state
“assume that Hn holds for n = 0”, nothing is actually being assumed.

Remark 3.6 It is clear that Rn(t, x) is non-decreasing with respect to t. For any n ∈ N⋆, if
Hn holds true, the boundedness of Rn given by Lemma 3.5 tells us that there is R∞

n (x) such
that

Rn(t, x) ↗
t→∞

R∞
n (x),

and this convergence is a priori only pointwise — it turns out that it is actually locally uniform,
we shall discuss this later.
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In addition, observe that taking the limit t → +∞ in (3.10a),Hn also implies that R∞
n

converges to S⋆
n when x is large, that is

R∞
n (x) −→

|x|→+∞
S⋆

n. (3.11)

In particular — we shall use this several time in the sequel — this means that there is
εn(x) such that εn(x) −→

|x|→+∞
0 and

Rn(t, x) ≤ S⋆
n + εn(x), ∀t > 0, ∀x ∈ R.

3.2 Rn solves a perturbed Fisher-KPP equation

We define the reaction function fn for n ∈ J1, N⋆K as

fn(z) := µn

(
S⋆

n−1

(
1 − e

− αn
µn

z
)

− z
)

, for any z ∈ R. (3.12)

The function fn is a KPP reaction, and f ′
n(0) = αnS⋆

n−1 − µn > 0 for n ≤ N⋆ (owing to our
definition of N⋆). Moreover observe that, S⋆

n as defined in (2.2) is the unique positive zero of
fn.

The main point of this subsection is to show that Rn satisfies a “perturbed” KPP equa-
tion.

Proposition 3.7 (Rn solves a perturbed KPP equation) Let n ∈ J1, N⋆K and assume
that Hn−1 holds true. Then, there is εn ∈ L∞(R) such that εn(x) −−→

|x|→+∞
0 and

−εn ≤ ∂tRn − dn∆Rn − fn(Rn) ≤ εn, (3.13)

for any t > 0 and any x ∈ R.

Remark 3.8 Proposition 3.7 is the cornerstone for proving the spreading result stated in
Proposition 3.1. Indeed, if we had εn = 0 in (3.13) — i.e. if Rn would solve exactly ∂tRn =
dn∆Rn + fn(Rn) —, classical results from reaction-diffusion theory would directly yield that
Rn spreads with speed cn toward S⋆

n, that is, Hn would be verified.
The presence of the perturbation εn rises some technicalities, that will be tackled in the

next Section 3.3.

The proof of Proposition 3.7 relies on Lemma 3.4 above and on the two other lemmas,
namely Lemma 3.9 and Lemma 3.11, that we now state and prove.

Lemma 3.9 (Exponential estimates) Let n ∈ J1, N⋆K and assume that the induction
hypothesis Hn−1 holds true. Then we have the following upper bounds on Rn and In.

For all c > cn, there are Λn, Λ̃n, λn > 0 such that

In(t, x) ≤ Λn e−λn(x−ct), ∀t > 0, ∀x ∈ R, (3.14)

and
Rn(t, x) ≤ Λ̃n e−λn(x−ct), ∀t > 0, ∀x ∈ R. (3.15)
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Proof of Lemma 3.9.
• Proof of (3.14). Let c > cn be fixed. By definition of cn, we can find ε > 0 small enough

so that
c > 2

√
dn(αn(S⋆

n−1 + ε) − µn) .

From (3.3), we have

∂tIn = dn∆In + (αnSn−1 − µn)In ≤ dn∆In + (αnRn−1 − µn)In, ∀t > 0, ∀x ∈ R.

Moreover, according to Remark 3.6, since we assume that Hn−1 holds, we can take R > 0
large enough so that, for any x > R, we have Rn−1(t, x) ≤ S⋆

n−1 + ε (where the ε has been
chosen above). As a result,

∂tIn ≤ dn∆In + (αn(S⋆
n−1 + ε) − µn)In, ∀t > 0, ∀x > R.

Define the function In(t, x) := Λne−λn(x−ct), where Λn and λn are two positive constants,
chosen such that

cλn − dnλ2
n −

(
αn(S⋆

n−1 + ε) − µn
)

≥ 0,

(this is possible because the discriminant of this equation is positive), and with Λn chosen
sufficiently large to ensure that, at initial time,

In|t=0(x) = Λne−λnx ≥ In|t=0(x), for all x > R,

and that, for all t > 0,

In(t, R) = Λne−λn(R−ct) ≥ Λne−λnR ≥ sup
t>0

sup
x∈R

In(t, x). (3.16)

Therefore, the function In satisfies ∂tIn ≥ dn∆In + (αn(S⋆
n−1 + ε) − µn)In for t > 0 and

x > R, and In(0, ) ≥ In(0, ) and In(t, R) ≥ In(t, R). Hence, the parabolic comparison
principle (applied on the set (0, +∞) × (R, +∞) to In, In) yields In ≥ In for any t > 0 and
x > R.

Now, for x ≤ R and t > 0, we have, using Lemma 3.5,

In(t, x) ≥ Λne−λnR
(3.16)

≥ sup
t>0

sup
x∈R

In(t, x),

and this completes the proof of (3.14).
• Proof of (3.15). In view of (3.1), we multiply (3.14) by µn before integrating between

0 to t, this yields
Rn(t, x) ≤ µn

cλn
Λne−λn(x−ct),

for all t > 0 and x ∈ R. This gives (3.15), with Λ̃n = µn

cλn
Λn.

Remark 3.10 (Symmetric version of (3.14) and (3.15)) Using similar arguments, we also
find that, for all t > 0 and x ∈ R, (3.14) and (3.15),

In ≤ Λn eλn(x+ct), (3.17)

and
Rn ≤ Λ̃n eλn(x+ct). (3.18)
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Lemma 3.11 (Rn is super-solution to a perturbed Fisher-KPP equation) Assume N⋆ ≥
2. Let n ∈ J2, N⋆K and assume that the induction hypothesis Hn−1 holds true. Then
there is εn ∈ L∞(R) such that εn(x) −−→

|x|→+∞
0 and

∂tRn ≥ dn∆Rn + fn(Rn) − εn, ∀t > 0, ∀x ∈ R. (3.19)

Proof of Lemma 3.11. Consider (3.8) as established in the proof of Lemma 3.4. By using
the definition of Rn (3.1a), this equality can be recast

∂tRn = dn∆Rn + µn

∫ t

0

αn

µn
Sn−1 ∂tRn ds − µnRn + µnI0

n. (3.20)

Let c̃ = cn+cn−1
2 be fixed. Due to the positivity of the integrated term in (3.20) we can write

(where the minimum of two reals a and b is denoted a ∧ b := min{a, b})∫ t

0

αn

µn
Sn−1 ∂tRn ds ≥

∫ t

|x|
c̃

∧ t

αn

µn
Sn−1 ∂tRn ds, ∀t > 0, x ∈ R.

Using (3.3) from Lemma 3.3, we get∫ t

0

αn

µn
Sn−1 ∂tRn ds ≥

∫ t

|x|
c̃

∧ t

αn

µn
Rn−1 e

− αn
µn

Rn ∂tRn ds,

and using the fact that Rn−1(t, x) is non-decreasing with respect to the t variable yields∫ t

0

αn

µn
Sn−1 ∂tRn ds

≥ Rn−1
(

|x|
c̃

∧t, x
) ∫ t

|x|
c̃

∧ t

αn

µn
e

− αn
µn

Rn ∂tRn ds

= Rn−1
(

|x|
c̃

∧t, x
) ∫ t

|x|
c̃

∧ t
−∂t

(
e

− αn
µn

Rn
)

ds

= Rn−1
(

|x|
c̃

∧t, x
) [

exp
(

−αn

µn
Rn

(
|x|
c̃

∧t, x
))

− exp
(

−αn

µn
Rn(t, x)

)]

= Rn−1
(

|x|
c̃

∧t, x
) [(

1 − exp
(

−αn

µn
Rn(t, x)

))
−
(

1 − exp
(

−αn

µn
Rn

(
|x|
c̃

∧t, x
)))]

+ S⋆
n−1

(
1 − exp

(
−αn

µn
Rn(t, x)

))
− S⋆

n−1

(
1 − exp

(
−αn

µn
Rn(t, x)

))

= S⋆
n−1

(
1 − exp

(
−αn

µn
Rn(t, x)

))
− ρ1

n(t, x) − ρ2
n(t, x), (3.21)

where
ρ1

n(t, x) = Rn−1
(

|x|
c̃

∧t, x
) [

1 − exp
(

−αn

µn
Rn

(
|x|
c̃

∧t, x
))]

(3.22)
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and
ρ2

n(t, x) =
[
S⋆

n−1 − Rn−1
(

|x|
c̃

∧t, x
) ] [

1 − exp
(

−αn

µn
Rn(t, x)

)]
. (3.23)

Combining (3.20) and (3.21), we are eventually led to

∂tRn ≥ dn∆Rn + fn(Rn) + µnI0
n − µnρ1

n(t, x) − µnρ2
n(t, x). (3.24)

The goal now is to draw estimates from above of ρ1
n(t, x) and ρ2

n(t, x).

• Estimate on ρ1
n. Owing to Lemma 3.5, Rn−1 ≤ Kn−1. Using the concavity of z 7→ 1−e−z

and the fact that Rn is non-decreasing with respect to the t variable, we have

ρ1
n(t, x) ≤ Kn−1

[
1 − exp

(
−αn

µn
Rn

(
|x|
c̃

∧t, x
))]

≤ Kn−1
αn

µn
Rn

(
|x|
c̃

∧t, x
)

≤ Kn−1
αn

µn
Rn

( |x|
c̃

, x

)
.

Now, fixing c > 0 such that cn < c < c̃ = (cn + cn−1)/2, (3.15) from Lemma 3.9 gives (for
x > 0)

ρ1
n(t, x) ≤ Kn−1

αn

µn
Λ̃n × exp

(
− λn

(
1 − c

c̃

)
︸ ︷︷ ︸

>0

x

)
.

Similarly, we get, for x < 0,

ρ1
n(t, x) ≤ Kn−1

αn

µn
Λ̃n × exp

(
λn

(
1 − c

c̃

)
x

)
,

so that in the end, we have that there are K, q > 0 such that

ρ1
n(t, x) ≤ Ke−q|x|. (3.25)

• Estimate on ρ2
n. We write

ρ2
n(t, x) = ρ2

n(t, x)1|x|<c̃t + ρ2
n(t, x)1|x|≥c̃t.

Because Sn, Rn are bounded (thanks to Lemma 3.9), and using the concavity of z 7→ 1 − e−z

and the fact that Rn is non-decreasing with respect to the t variable, we have that there is
K > 0 such that

|ρ2
n(t, x)1|x|≥c̃t| ≤ KRn(t, x)1|x|≥c̃t ≤ KRn

( |x|
c̃

, x

)
.

We are in the same situation than in the previous step, we can use the exponential estimates
from Lemma 3.9 to find that there is q > 0 such that

|ρ2
n(t, x)1|x|≥c̃t| ≤ Ke−q|x|.
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On the other hand, we have

|ρ2
n(t, x)1|x|<c̃t| ≤

∣∣∣S⋆
n−1 − Rn−1

(
|x|
c̃

∧t, x
)∣∣∣1|x|<c̃t ≤

∣∣∣∣S⋆
n−1 − Rn−1

( |x|
c̃

, x

)∣∣∣∣ .
Because Hn−1 holds true and because c̃ < cn−1, the quantity x 7→ |S⋆

n−1 − Rn−1( |x|
c̃ , x)| goes

to zero as |x| goes to +∞.

Therefore, we have proven that ρ1
n(t, x) + ρ2

n(t, x) ≤ ε(x), where ε(x) −→
|x|→+∞

0, the result

follows.

Combining all that precedes, we are now in position to prove Proposition 3.7.

Proof of Proposition 3.7. If n = 1, then we already have the result as explained in
Remark 3.2. We suppose from now on that N⋆ ≥ 2 and n ≥ 2.

Assume that Hn−1 holds true. Then, owing to Remark 3.6, we have Rn−1 ≤ S⋆
n−1 +εn(x),

for some function εn such that εn(x) −→
|x|→+∞

0. Combining this with Lemma 3.4 yields that

∂tRn ≤ dn∆Rn + µnS⋆
n−1

(
1 − e

− αn
µn

Rn
)

− µnRn + µnεn + µnI0
n.

On the other hand, Lemma 3.11 yields that there is ε̃n such that ε̃n(x) −−→
|x|→+∞

0 so that

∂tRn ≥ dn∆Rn + fn(Rn) − ε̃n. (3.26)

Therefore, up to renaming max{|ε̃n|, µn|εn| + µnI0
n} as εn, the result follows.

3.3 Propagation of Rn for n ∈ J1, N⋆K

The aim of this section is to prove Proposition 3.1. We will proceed by induction: assuming
Hn−1, we prove that Hn holds true.

As a first step, we prove (3.10a) in a weaker form, in the sense that we show the convergence
without the speed. This is outlined in the following lemma.

Lemma 3.12 Let n ∈ J1, N⋆K and assume that Hn−1 holds true. Then

Rn(t, x) −→
t→+∞

R∞
n (x), (3.27)

locally uniformly. Moreover
R∞

n (x) −→
|x|→+∞

S⋆
n. (3.28)

Observe that Lemma 3.12 differs from Remark 3.6, since we claim (3.27)-(3.28) under Hn−1,
and not Hn.

We also recall that H0 is vacuously true, that is, when n = 1, there is no hypothesis in
the lemma, and we already know that the result is true, as explained in Remark 3.2.

Proof of Lemma 3.12. Assume that Hn−1 holds true.

• Step 1. Rn converges locally uniformly. Because the function Rn(t, x) is non-decreasing
with respect to t, and because it is uniformly bounded — thanks to Lemma 3.9 —, there is
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R∞(x) such that Rn(t, x) −→
t→+∞

R∞
n (x). This convergence is pointwise. However, Rn(t, x)

solves (3.7), therefore, owing to standard parabolic regularity theory [33], the convergence is
actually locally uniform, and moreover the limit function R∞

n (x) solves

−εn ≤ −dn∆R∞
n − fn(R∞

n ) − µnI0
n ≤ εn.

In the rest of the proof, we take ρ ∈ R to be an arbitrary limit point of R∞
n (x) when |x| goes

to +∞. This means that there is a sequence (xk)k∈N such that |xk| → +∞ and

ρ = lim
k→+∞

R∞
n (xk).

The rest of the proof consists in showing that ρ = S⋆
n.

• Step 2. Either ρ = 0 or ρ = S⋆
n. We denote

ρk(x) := R∞
n (x + xk).

It is classical from elliptic regularity theory [22] that, up to extraction,

ρk(x) −→
k→+∞

ρ∞(x),

where ρ∞ solves the elliptic equation

−dn∆ρ∞ − fn(ρ∞) = 0.

Moreover, because Rn is uniformly bounded, the same holds true for ρ∞. It is a classical
result in reaction-diffusion equations theory that the only bounded solutions of this equation
are the zeros of the function fn, that are the constants 0 and S⋆

n (see [1] for instance).

By definition of ρk, we have
ρ = lim

k→+∞
ρk(0),

therefore, either ρ = 0 or ρ = S⋆
n.

• Step 3. Proof that ρ > 0. Assume by contradiction that ρ = 0. Arguing as in the
previous step, this implies that R∞

n ( + xk) → 0 locally uniformly as k → +∞.
Now, let us show that there are k ∈ N and T > 0 large enough so that

∂tIn ≥ dn∆In + (αn(S⋆
n−1 − ε)e− αn

µn
ε − µn)In, ∀t > T, ∀x ∈ BR(−xk). (3.29)

Because R∞
n ( + xk) → 0 locally uniformly as k goes to +∞, we can find k large enough so

that
R∞

n (x + xk) ≤ ε, ∀x ∈ BR(0).

Therefore, thanks to (3.3), we have, for any t > 0 and x ∈ BR(−xk),

Sn−1(t, x) ≥ Rn−1(t, x)e− αn
µn

Rn(t,x) ≥ Rn−1(t, x)e− αn
µn

R∞
n (x) ≥ Rn−1(t, x)e− αn

µn
ε
.

Hence, because Hn−1 holds true, up to increasing k if needed, and choosing T > 0 large
enough, we have, for all t > T and x ∈ BR(−xk),

Sn−1(t, x) ≥ (S⋆
n−1 − ε)e− αn

µn
ε
.
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This latter inequality implies that (3.29) holds true.

Let now λ be the principal eigenvalue of the operator −dn∆ − (αn(S⋆
n − ε)e− αn

µn
ε − µn) on

BR(−xk) with Dirichlet boundary conditions, and let ϕ be a positive eigenfunction associated
to the principal eigenvalue (its existence is guaranteed by the Krein-Rutman theorem [31].
Therefore, ϕ ∈ C2(BR(−xk)) is such that ϕ > 0 on BR(−xk), ϕ = 0 on ∂BR(−xk) and

−dn∆ϕ − (αn(S⋆
n − ε)e− αn

µn
ε − µn)ϕ = λϕ.

Let v(t, x) = ϕ(x)e−λt, it solves

∂tv = dn∆v + (αn(S⋆
n−1 − ε)e− αn

µn
ε − µn)v, t > T, x ∈ BR(−xk)

with Dirichlet boundary condition v(t, x) = 0 for x ∈ ∂BR(−xk) and t > T , and up to
multiplying ϕ by a small constant, we can ensure that v(T, ) ≤ In(T, ). It then follows from
the parabolic comparison principle that In(t, x) ≥ v(t, x) for all t > T and x ∈ BR(−xk). It
is classical (see [6]) that, up to taking R large enough, the principal eigenvalue λ can be made
as close as we want to −(αn(S⋆

n − ε)e− αn
µn

ε − µn), which is strictly negative (because n ≤ N⋆).
Therefore, v(t, x) = ϕ(x)e−λt → +∞ for all x in BR(−xk) as t → +∞, which is in

contradiction with the boundedness of In given by Lemma 3.5.
In conclusion, we have proved that ρ = S⋆

n, that is, R∞
n (x) indeed converges toward S⋆

n as
|x| goes to +∞.

We now turn to the proof of Proposition 3.1. The idea is to compare Rn with a function
solution of a bistable equation. Bistable reaction-diffusion equations are PDE of the form

∂tu = d∆u + f(u),

where the function f vanishes at three points: 0 < θ < σ and is such that f < 0 on (0, θ) and
f > 0 on (σ, θ). There is a wide literature on this specific type of equations [1, 3, 16, 38]. In
particular, we recall the two following technical results that we shall need:

Proposition 3.13 (Sufficient condition for spreading in bistable equations) Let f be a
Lipschitz continuous function such that there are 0 < θ < σ such that f(0) = f(θ) =
f(σ) = 0 and f < 0 on (0, θ) and f > 0 on (θ, σ). Assume that

∫ σ
0 f(x)dx > 0.

Let u be the solution to

∂tu = d∆u + f(u), t > 0, x > 0, (3.30)

with Dirichlet boundary condition u(t, 0) = 0 for t > 0 and with initial datum u0 ≥ 0
compactly supported.

Then, there is c⋆ > 0 such that, for all ε > 0, there is L > 0 such that if u0 ≥
(θ + ε)1[0,L], the function u spreads toward σ with speed c⋆ > 0 (which depends only on
f) in the sense that

sup
δ<x<ct

|u(t, x) − σ| −→
δ,t→+∞

0, ∀c ∈ (0, c⋆),

and
sup
x>ct

|u(t, x)| −→
t→+∞

0, ∀c > c⋆.
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This result is classical and is based on constructing appropriate compactly supported subso-
lutions to (3.30). We refer to [1, 16] for proofs of this facts.

The next proposition tells us that, when we have a family of bistable nonlinearities that
converge to a KPP nonlinearity, then the spreading speeds associated also converge. We shall
use it with our KPP nonlinearities fn defined in (3.12).

Proposition 3.14 (Convergence of bistable speeds) Let n ∈ J1, N⋆K and consider the
KPP nonlinearity fn defined in (3.12).

Let (fη)η>0 be a family of bistable nonlinearities such that fη → fn locally uniformly
as η → 0. For each η > 0, let us denote cη the corresponding speed of spreading given by
Proposition 3.13. Then

cη −→
η→0

cn.

Unlike the speed of propagation for KPP reaction-diffusion equations, there is no explicit
formula for the speed of propagation for bistable equations. There are variational formulas
(see [24] for instance), but the proof of Proposition 3.14 can be obtained directly by taking
the limit of the bistable traveling fronts for each fη, see [38, Proposition 2.6] (we also refer to
[3] for a different approach).

We are now in position to prove Proposition 3.1, which establishes the propagation of Rn.

Proof of Proposition 3.1. The proof is done by induction. Let n ∈ J1, N⋆K and assume
that Hn−1 holds true. Let us show that Hn also holds true.

Let η, L > 0 to be chosen small enough and large enough after.

Because we assume that Hn−1 holds true, Proposition 3.7 tells us that Rn solves (3.13)
(the perturbed KPP equation), where εn(x) goes to zero as |x| goes to +∞.

Therefore, we can take R > 0 such that |εn(x)| ≤ η for x > R, so that the function Rn

satisfies
∂tRn ≥ dn∆Rn + fn(Rn) − η, t > 0, x > R. (3.31)

We now prove that the function Rn spreads toward S⋆
n with the wanted speed toward the

right (when x → +∞), the spreading toward the left (for x → −∞) can be done similarly.
Owing to Lemma 3.12, up to increasing R if needed, we can find T > 0 large enough so

that
Rn(t, x) ≥ S⋆

n − η, ∀t ≥ T, ∀x ∈ [R, R + L].

We define ρ(t, x) := Rn(t, x) + η. It satisfies the three following properties
ρ(t, x) ≥ η, ∀t > T, ∀x > R,

ρ(T, x) ≥ S⋆
n, ∀x ∈ [R, R + L],

∂tρ ≥ dn∆ρ + fη(ρ), t > T, x > R,

where (see Figure XII below),

fη(v) :=
{

fn(v − η) − η, if v ≥ η,

−v, if v ∈ (0, η).
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Observe that in the last inequality we can use fη as defined and not simply fn( − η) − η,
because the function ρ is always larger that η, therefore, the values taken by fη(v) for v < η
do not matter.

The function fη is a bistable nonlinearity in the sense defined above, provided η is suffi-
ciently small. The function fη vanishes at x = 0 and at two other points 0 < θ < σ. Observe
that, as η goes to 0+, we have θ → 0 and σ → S⋆

n. The graph of fη is depicted below.

Figure XII — Representation of the functions fn and fη.

We take η small enough so that θ < S⋆
n and we denote v the solution to the following equation

∂tv = dn∆v + fη(v), t > T, x > R, (3.32)

with “initial” datum v(T, x) = S⋆
n1[R,R+L](x) and Dirichlet boundary condition v(t, R) = 0

for all t > T .
Thanks to Proposition 3.13, we can choose L large enough so that the solution v of (3.32)

spreads toward σ with some speed that we denote cη (to emphasize the dependence on η).

Let us take c ∈ (0, cn). Up to taking η small enough, owing to Proposition 3.14, we can
ensure cη > c.

The parabolic comparison principle then implies that ρ ≥ v for any t > T and x > R.
Therefore, because ρ = Rn + η and because Rn is non-decreasing with respect to t, we find

v(t, x) − η ≤ Rn(t, x) ≤ R∞
n (x), ∀t > T, x > R,

hence, for all t > T ,

sup
δ<|x|<ct

|Rn(t, x) − S⋆
n| ≤ max

{
sup

δ<x<ct
|R∞

n (x) − S⋆
n|, sup

δ<x<ct
|v(t, x) − σ| + |σ − S⋆

n − η|
}

.

Because v spreads toward σ with speed cη > c and because R∞
n (x) goes to S⋆

n as x goes to
+∞, we find that

lim sup
δ,t→+∞

sup
δ<|x|<ct

|Rn(t, x) − S⋆
n| ≤ |σ − S⋆

n − η|.

We have σ → S⋆
n as η → 0. Because η is arbitrary, we find

lim sup
δ,t→+∞

sup
δ<|x|<ct

|Rn(t, x) − S⋆
n| = 0,
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and this is true for all c ∈ (0, cn), that is, Rn spreads at least with speed cn toward S⋆
n.

In addition, Rn converges toward S⋆
n at most with speed cn. Indeed, it follows from Lemma

3.9 (specifically (3.15)) that

sup
|x|>ct

|Rn(t, x)| −−→
t→+∞

0, ∀c > cn.

Therefore, we have proven that, if n ∈ J0, N⋆ − 1K and if Hn−1 is true, then Hn also holds
true. Proposition 3.1 is proved by induction.

3.4 Proof of Theorem 2.4

We are now in position to prove Theorem 2.4: for n ∈ J1, N⋆K, the opinion n spreads while
for n > N⋆, the opinion disappears. We start with a technical lemma.

Lemma 3.15 Assume N⋆ < +∞. For all n ≥ N⋆ + 1, there is ε ∈ L∞(R) such that
ε(x) −→

|x|→+∞
0 and Rn ≤ ε.

Proof of Lemma 3.15.
• Step 1. The case n = N⋆ + 1.
Let us start with proving that there is ε ∈ L∞(R), with ε(x) −→

|x|→+∞
0, such that

RN⋆+1 ≤ ε. We write n instead of N⋆ + 1 for the sake of readability. Owing to Lemma 3.4,
we have

∂tRn ≤ dn∆Rn + µnRn−1
(
1 − e

− αn
µn

Rn
)

− µnRn + µnI0
n, t > 0, x ∈ R.

Because HN⋆ holds true, owing to Remark 3.6, we have that there is ε̃ ∈ L∞(R) such that
ε̃(x) −→

|x|→+∞
0, and

∂tRn ≤ dn∆Rn + µnS⋆
N⋆

(
1 − e

− αn
µn

Rn
)

− µnRn + ε̃, t > 0, x ∈ R.

Owing to Lemma 3.5, we also know that Rn ≤ Kn for some Kn > 0.
Let u(t, x) be solution of

∂tu = dn∆u + fn(u) + ε̃, t > 0, x ∈ R, (3.33)

with initial datum u(0, ) = Kn. Up to increasing Kn if needed, we can ensure that Kn is a
stationary supersolution of (3.33). Then, is it is classical that u(t, x) ↘

t→+∞
U(x), where U is

a stationary solution of (3.33). We have by comparison that Rn(t, x) ≤ R∞
n (x) ≤ U(x) for all

t > 0, x ∈ R.
Let us show that U(x) −→

|x|→+∞
0. To this aim, we take a sequence (xk)k∈N such that

|xk| → +∞ as k → +∞, and we define the translated functions Uk(x) = U(x + xk).
Owing to classical elliptic regularity results [22], we have that, up to extraction, Un −→

n→+∞
U∞ (this convergences is locally in W 2,p(R), for all p > 1), where U∞ solves

dn∆U∞ + fn(U∞) = 0,
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and 0 ≤ U∞ ≤ Kn. The only function that satisfies this is the function everywhere equal to
zero. Indeed, let z(t) be solution of the ODE ż = fn(z) with initial datum z(0) = Kn. We
have z(t) −→

t→+∞
0.

The parabolic comparison principle implies that z(t) ≥ U∞(x) for all t > 0, and x ∈ R.
Taking the limit t → +∞ implies that U∞ ≡ 0.

The result then holds true for n = N⋆ + 1 with ε = U .

• Step 2. The case n > N⋆ + 1.
We prove the result by induction: we show that, if there is n ≥ 2 such that Rn−1 ≤ ε, for

some ε ∈ L∞(R), with ε(x) −→
|x|→+∞

0, then the same is true for Rn.

Owing to Lemma 3.4, we have that

∂tRn ≤ dn∆Rn + µnRn−1
(
1 − e

− αn
µn

Rn
)

− µnRn + µnI0
n.

Let η > 0 be such that −κ := αnη − µn < 0. There is R > 0 such that

∂tRn ≤ dn∆Rn + µnη
(
1 − e

− αn
µn

Rn
)

− µnRn + µnI0
n, ∀t > 0, ∀x > R.

Using the concavity of z 7→ µnη
(
1 − e

− αn
µn

z
)

− µnz, we have

∂tRn ≤ dn∆Rn − κRn + µnI0
n, ∀t > 0, ∀x > R. (3.34)

Owing to Lemma 3.5, there is Kn > 0 such that Rn ≤ Kn. Therefore, up to taking A > 0
large enough and λ > 0 small enough, the function

v(x) = Ae−λx

is a stationary supersolution of the equation (3.34). By comparison, up to increasing A if
needed, we have Rn ≤ Ae−λx. Using the same arguments for x < 0, we find that Rn ≤ Ae−λ|x|.

Therefore, we have proven that, if there is ε ∈ L∞(R), with ε(x) −→
|x|→+∞

0, such that

Rn−1 ≤ ε, then the same holds true for Rn. The lemma follows by a direct induction.

We now have all the tools to prove our main result, namely Theorem 2.4.

Proof of Theorem 2.4.

• Proof of (i): Sn spreads at most with speed cn. Let n ∈ J1, N⋆K. Owing to Lemma 3.3,
we have, Sn ≤ Rn. Therefore, Proposition 3.1 directly implies that

sup
|x|>(cn+ε)t

|Sn(t, x)| ≤ sup
|x|>(cn+ε)t

|Rn(t, x)| −→
t→+∞

0.

This proves the point (i) of the theorem.

• Proof of (ii): Sn converges toward S⋆
n in the intermediate region cn+1t < |x| < cnt.

For n = 0, this is a consequence of Remark 3.2. Let n ∈ J1, N⋆K. We recall that we define
cN⋆+1 = 0. Owing to Proposition 3.1, point (j), we have (when n = N⋆ this is actually a
consequence of Lemma 3.15)

sup
|x|>(cn+1+ε)t

|Rn+1| −→
t→+∞

0,
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and, owing to the point (jj), there holds

sup
(cn+1+ε)t<|x|<(cn−ε)t

|Rn − S⋆
n| −→

t→+∞
0.

Therefore,
sup

(cn+1+ε)t<|x|<(cn−ε)t
|Rne

− αn+1
µn+1

Rn+1 − S⋆
n| −→

t→+∞
0.

Owing to Lemma 3.3, we have that Rne
− αn+1

µn+1
Rn+1 ≤ Sn ≤ Rn, from which it follows that

sup
(cn+1+ε)t<|x|<(cn−ε)t

|Sn − S⋆
n| −→

t→+∞
0.

This proves the point (ii) of the theorem.
• Proof of (iii): Sn converges toward S†

n in the region δ < |x| < cn+1t. Let n ∈ J1, N⋆ −1K.
Let ε > 0 be fixed. We want to prove that

sup
δ<|x|<(cn+1−ε)t

|Sn − S†
n| −→

δ,t→+∞
0.

First, owing to (3.9) from the proof of Lemma 3.4, we have for all t > 0 and x ∈ R,

∂tRn+1 = dn+1∆Rn+1 + µn+1(Rn − Sn) − µn+1Rn+1 + µn+1I0
n+1. (3.35)

Now, let us chose three sequences (tk)k∈N, (xk)k∈N, (δk)k∈N such that δk, tk → +∞ and δk <
|xk| < (cn+1 − ε)tn.

We introduce the translated functions Rk
n+1 = Rn+1( + tk, + xk), Rk

n = Rn( + tk, + xk)
and Sk

n = Sn( + tk, + xk).
For any t > 0 and x ∈ R, we have, for k large enough,

|Rn+1(t + tk, x + xk) − S⋆
n+1| ≤ sup

x+xk≤|y|≤(cn+1− ε
2 )tk

|Rn+1(t + tk, y) − S⋆
n+1|,

and, owing to Proposition 3.1, this goes to zero as k goes to +∞.
Therefore, owing to parabolic regularity estimates, we have that Rk

n+1 converges (up to
a subsequence) locally uniformly in W 2,p, for all p > 1, to the function everywhere constant
equal to S⋆

n+1. Similarly, Rk
n converges toward the function everywhere constant equal to S⋆

n.
Therefore, because we have

∂tR
k
n+1 = dn+1∆Rk

n+1 + µn+1(Rk
n − Sk

n) − µn+1Rk
n+1 + µn+1I0

n+1( + xk),

taking the limit k → +∞ in this equation yields that, up to a subsequence,

lim
k→+∞

Sk
n(t, x) = S⋆

n − S⋆
n+1 = S†

n,

and this convergence is locally uniform. Therefore, we have proven that, for each sequences
(xk)k, (δk)k, (tk)k, as above, we have, up to a subsequence, Sn(tk, xk) −→

k→+∞
S†

n. The point
(iii) of the theorem then holds true.

• Proof of (iv): Sn does not spread when n > N⋆.
Now, owing to Lemma 3.15, we have that, for all n ≥ N⋆ + 1, there is ε ∈ L∞(R), with

ε(x) −→
|x|→+∞

0, such that Rn ≤ ε. Therefore, because Sn ≤ Rn, the result holds true.
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4 Qualitative properties of the propagation sequences

This section is dedicated to the proof of Theorem 2.5 concerning the qualitative properties of
N⋆, the maximal complexity obtained by the population.

The key point is to study the propagation sequences given by Definition 2.1. To do so,
we can rephrase the definition of the propagation sequences as follows: let S⋆

0 , (dn)n∈N⋆ ,
(αn)n∈N⋆ , (µn)n∈N⋆ be given. For n ∈ N, define

φn(x) := x

/(
1 − e

− αn+1
µn+1

x
)

.

This function is strictly increasing for x > 0, we have φn(x) −→
x→0

µn+1
αn+1

and φn(x) > x for all
x > 0.

Let N⋆ and (S⋆
n)n∈J0,N⋆K be the maximal complexity and the propagation sequence given

by Definition 2.1. We have

S⋆
n = φn(S⋆

n+1), ∀n ∈ J0, N⋆ − 1K, (4.1)

and we can characterize N⋆ as follows:

N⋆ is the smallest integer k ∈ N such that αk+1
µk+1

S⋆
k ≤ 1, (4.2)

with the convention that N⋆ = +∞ if for all k ∈ N, we have αk+1
µk+1

S⋆
k > 1.

Observe that, when all the coefficients (αn)n∈N and (µn)n∈N are independent of n, we
necessarily have N⋆ < +∞. Indeed, if this were not the case, then we could take the limit
n → +∞ in (4.1): the function φn does not depend on n, and the sequence (S⋆

n)n∈N is non-
increasing, hence converges to a limit on R⋆

+, and we would reach a contradiction because φn

has no fixed point on R⋆
+.

We start with proving the first point of Theorem 2.5, that is, we show that the maximal
complexity is a non-decreasing function of the initial population S⋆

0 and of the transmission
parameters (αn)n∈N⋆ and non-increasing with respect to the recovery parameters (µn)n∈N⋆

Proof of Theorem 2.5 1 . For n ∈ N⋆, denote

φn(x) := x

/(
1 − e

− αn+1
µn+1

x
)

and φn(x) := x

/(
1 − e

− αn+1
µn+1

x
)

. (4.3)

Owing to the hypotheses, we have φn ≤ φn.

We denote N⋆ := N⋆(S⋆
0 , αn, µn) and N⋆ := N⋆(S⋆

0 , αn, µn) the maximal complexi-
ties reached by the systems with each set of parameters, and we denote (S⋆

n)n∈J1,N⋆K and
(S⋆

n)
n∈J1,N⋆K

the corresponding propagation sequences.

Since S⋆
0 ≤ S⋆

0 , and because the functions φn and φn are non-decreasing and φn ≤ φn, it
follows from (4.1) that, for each n ∈ J1, min{N⋆, N⋆}K, we have

S⋆
n ≤ S⋆

n,
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and therefore
(αn+1/µn+1)S⋆

n ≤ (αn+1/µn+1)S⋆
n.

Owing to (4.2), this gives
N⋆ ≤ N⋆.

We now turn to the second point of Theorem 2.5, that is we show that, if the parameters
are chosen adequately, it is possible to have N⋆ = +∞. Moreover, it is possible to ensure
that any proportion of the initial population can reach infinite complexity.

Proof of Theorem 2.5 2 . Let us start by observing from (4.3), that, for all n ∈ N⋆,

φn(x) ≤ x + 1
λn+1

,

Where λn := αn
µn

. Therefore, owing to (4.1), we find, for all n ∈ N⋆,

S⋆
n ≥ S⋆

0 −
n∑

k=1

1
λk

.

Hence, up to choosing a sequence (λn)n∈N⋆ so that
∑+∞

k=1
1

λk
≤ ε, we ensure that

lim
n→+∞

S⋆
n ≥ S⋆

0 − ε.

To conclude the proof, we need to apply Theorem 2.4, and to do so, we need the sequence of
the speeds (cn)n∈N⋆ to be decreasing (Assumption 2.2). One way to do this is to choose the
diffusions (dn)n∈N so that this is true. We could also take all the diffusions equal (which is more
natural from the modeling point of view) and multiply each αn and µn by a coefficient εn > 0,
so that the ratios λn are not changed while the speeds cn = 2

√
d(αn+1εn+1S⋆

n − εn+1µn+1)
are decreasing.

We now turn to the third point of Theorem 2.5, that is, we show that the maximal
complexity N⋆ is equivalent to eαS⋆

0 /µ/(αS⋆
0/µ) = eR0/R0.

Proof of Theorem 2.5 3 . Let S⋆
0 > 0 fixed. Let (S⋆

n)n∈N⋆ be the propagation sequence,
as given in Definition 2.1.

First, observe that, because the sequence (S⋆
n)n∈N⋆ is decreasing, then the sequence of the

speeds (cn)n∈N⋆ = (2
√

d(αS⋆
n − µ) )n∈N⋆ is also strictly decreasing, hence Assumption 2.2 is

verified. Therefore, Theorem 2.4 applies. We let λ = α
µ .

By denoting φ(x) := x/(1 − e−λx), we have by definition

S⋆
n−1 = φ(S⋆

n), ∀n ∈ J1, N⋆K.

Because the αn and µn are independent of n, as explained in the beginning of this section,
we have N⋆ < +∞. Owing to (4.2), we have that

S⋆
N⋆ ≤ 1

λ
and SN⋆−1 >

1
λ

.

Therefore, because φ is increasing,

1
λ

≤ S⋆
N⋆−1 ≤ φ( 1

λ
). (4.4)
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We denote (un)n∈N the sequence defined by induction un+1 = φ(un) with u0 = 1
λ . Because

φ(x) > x the sequence (un)n∈N is increasing. It follows that it diverges to +∞.
Applying φ in in (4.4) N⋆ − 1 times, we get

uN⋆−1 ≤ S⋆
0 ≤ uN⋆ . (4.5)

Now, define Φ(x) =
∫ x

0
eλz−1

z dz. We have

|Φ(un+1) − Φ(un) − Φ′(un)(un+1 − un)| ≤ 1
2 sup

z∈[un,un+1]
|Φ′′(z)|(un+1 − un)2. (4.6)

We have un+1 − un = un

eλun −1 = 1
Φ′(un) , and this goes to zero when n goes to +∞.

On the other hand, it is clear that Φ′′ is increasing for z > 0. Therefore,

1
2 sup

z∈[un,un+1]
|Φ′′(z)|(un+1 − un)2 ≤ Φ′′(un+1)

2Φ′(un)2 ≤ λ
u2

n

un+1

eλun+1

(eλun − 1)2 ,

and because un+1 − un goes to zero when n goes to +∞, we have that the right-hand side in
(4.6) goes to zero.

Therefore, Φ(un+1) − Φ(un) → 1 when n goes to +∞, and the Cesàro lemma implies

Φ(un)
n

−→
n→+∞

1.

Now, applying Φ (which in increasing) to (4.5), we get

N⋆(S⋆
0) ∼

S⋆
0 →+∞

Φ(S⋆
0).

By observing that Φ(x) ∼
x→+∞

eλx

λx , the result follows.
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