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Abstract
To better understand how populations respond to dynamic external pressure, we propose

a new diffusion model in the moving half-line {z ≥ b(t)}, where the boundary position b(t) is
a given nondecreasing function of time. A Robin boundary condition is imposed at z = b(t)
to prevent individuals from leaving the domain, so that the shifting boundary acts as an
impermeable wall—a “piston”—that sweeps the individuals it encounters. Our analysis
focuses on the cases where b(t) ∼ ctβ with β ∈ [0, 1]. We prove quantitative convergence
results characterized by attraction toward self-similar profiles, based on entropy techniques
and Duhamel’s principle. When β goes through the critical value 1/2, the shape of the
self-similar asymptotic profile switches from Gaussian to exponential. In particular, this
profile turns out to be stationary when β = 1, reflecting a delicate balance between diffusion
and advection induced by the moving boundary.
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1 Introduction

1.1 The model

In this paper, we are interested in the following diffusion equation posed on the moving half-line
{z ≥ b(t)}: {

∂tu = d∂zzu, t > 0, z > b(t),
−d∂zu = b′(t)u, t > 0, z = b(t),

(1.1)
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associated with bounded, compactly supported, and nonnegative initial data u0 : R+ → R+.
Here, the constant d > 0 denotes the diffusivity rate, and the position of the moving boundary
z = b(t) ∈ C1(R+) can be chosen as a nondecreasing function vanishing at t = 0, representing an
inward-shifting obstacle that sweeps individuals in the context of population dynamics.

Figure I — Variational trends induced by the moving boundary in equation (1.1).
Far from the boundary z = b(t), individuals spread according to the diffusion process driven by
the Laplacian (red arrows). Near the boundary, individuals are blocked and swept to the right,
leading to concentration of population in this region (purple arrows).

In (1.1), the Robin boundary condition ensures the conservation of mass within the moving
domain {z ≥ b(t)}. Indeed, defining the total mass at time t ≥ 0 as

M(t) :=
∫ ∞

b(t)
u(t, z) dz,

and differentiating with respect to time yields

0 = M ′(t) = −b′(t)u(t, b(t)) − d∂zu(t, b(t)).

This boundary condition precisely compensates for the mass flux induced by the motion of the
domain, thereby maintaining the physical consistency of the PDE dynamics. In this sense, the
Robin condition plays a corrective role by balancing the inward diffusive flux −d∂zu with the
effective transport flux b′(t)u resulting from the boundary motion. Throughout the manuscript,
the constant M thus denotes to the total mass of the population:

M :=
∫ ∞

0
u0(z) dz. (1.2)

In this paper, we aim to understand the asymptotic behavior of the solution u(t, z) with
respect to the speed b′(t) of the moving boundary. Specifically, we consider an algebraic form for
b(t), that is,

b(t) := c[(1 + t)β − 1], (1.3)

for some constants c > 0 and β ≥ 0. Observe that b vanishes at t = 0, its derivative b′ is locally
bounded on R+, and b(t) behaves like ctβ as t → ∞.

To build intuition about this algebraic choice, let us first consider the simple case β = 0,
corresponding to the static case b ≡ 0 and thus to the classical heat equation on R+ with
homogeneous Neumann boundary condition at z = 0:{

∂tu = d∂zzu, t > 0, z > 0,
−d∂zu = 0, t > 0, z = 0.

(1.4)
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By classical reflection arguments [17], the solution to (1.4) can be written as

u(t, z) =
∫ ∞

ξ=0
H(t, z, ξ)u0(ξ) dξ, (1.5)

where the fundamental solution H is given by

H(t, z, ξ) := 1√
4πdt

[
exp

(
−(z − ξ)2

4dt

)
+ exp

(
−(z + ξ)2

4dt

)]
. (1.6)

From a microscopic perspective, the function z 7→ H(t, z, ξ) can be interpreted as the
probability density function describing the position Zt of a single individual at time t, starting
from the initial position ξ ≥ 0. This stochastic interpretation reflects the diffusion process at
the individual scale, which, when aggregated over the entire population, yields the macroscopic
diffusion equation (1.4) governing the population density.

By focusing on an individual starting from ξ = 0, we can then compute its expected position
as a function of time:

E[Zt] =
∫ ∞

z=0
z H(t, z, 0) dz (1.6)= 2√

4πdt

∫ ∞

z=0
z e− z2

4dt dz = k
√
t, (1.7)

for some positive constant k. The calculation (1.7) can be generalized to any initial position ξ ≥ 0,
and shows that the mean displacement of individuals increases proportionally to

√
t—which is

characteristic of standard diffusive dispersal [13, Chapter 1, Section 5].
The above observation suggests that the moving boundary b(t) must advance at a rate

comparable to or faster than
√
t to significantly influence the population distribution. Indeed, if

the boundary moves at a slower rate, the typical scale of individual displacement eventually exceeds
the boundary’s advance, resulting in only a weak interaction over time3, see Figure II (a)(b).
Conversely, if the boundary moves at a faster rate than

√
t, then individuals remain confined

near it, thus maintaining a strong interaction over time4, see Figure II (c).
This reasoning motivates the choice of an algebraic boundary b(t) ∼ ctβ as t → ∞, in line with

(1.3). By varying the exponent β, we can thus explore different regimes of boundary movement
relative to the diffusive spread of the population.

3Note that Brownian motion is recurrent in one dimension, meaning that individuals always have a nonzero
probability of returning near the boundary. In particular, even when the boundary advances slowly, interaction
with it persists at the individual level. However, as time grows, a larger fraction of the population spreads beyond
the boundary’s influence, making the interaction effectively “weak” at the population scale.

4In this regime (where the boundary outpaces the diffusion scaling) an interesting probabilistic question would
be to quantify how the number of particle-boundary collisions grows over time.
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Figure II — Illustration of typical microscopic trajectories for problem (1.1) under
different boundary speeds: static (a), slower than

√
t (b), and faster than

√
t (c).

Each simulation shows the trajectory of a single individual initially located at z = 0, undergoing
one-dimensional Brownian motion reflected at the moving boundary z = b(t) (purple lines). The
white regions above the purple lines correspond to the domain of interest {z ≥ b(t)}. In cases (a)
and (b), interaction with the boundary remains weak, since the typical diffusive displacement scales
like

√
t. In contrast, in case (c), frequent collisions with the boundary occur, leading to significant

deviations in the trajectory.

1.2 Mathematical background and biological context

Since the seminal works of Fisher [20] and Kolmogorov, Petrovski, and Piskunov [25] in the
1930s, reaction–diffusion equations have received significant attention within the mathematical
community. They are valued not only for their extensive applications across diverse fields such
as ecology, epidemiology, and social sciences, but also for their relative accessibility in analyzing
certain qualitative behaviors.

Over the last few decades, a rich literature has developed around reaction–diffusion equations
in moving environments (e.g., [1, 8, 9, 10, 11, 18, 19, 33]). In these models, species typically track
habitats moving at a constant speed—a widely adopted paradigm for modeling phenomena such
as poleward species shifts under climate change. Environmental changes are usually incorporated
either through an advection term, resulting in equations of the form

∂tu = ∂zzu− c∂zu+ f(z, u),

or by evaluating the growth term in a co-moving frame, namely f(z − ct, u).
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In contrast, our contribution departs from the classical paradigm in two key respects. First,
we prescribe an algebraic boundary law b(t) = c[(1 + t)β − 1] which, to the best of our knowledge,
has not been explored in the literature. Unlike the constant-speed shifts of earlier models, this
law generates accelerating or decelerating boundary motion, offering new insights into population
adaptation under time-varying spatial constraints. Second, our work belongs to the emerging
framework of dynamically prescribed domains Ω(t). This formulation has only recently gained
attention, notably through the works of Allwright [4, 5], where reaction–diffusion equations were
studied in time-dependent intervals with homogeneous Dirichlet boundary conditions. Here, we
move to a qualitatively different geometry by considering a time-dependent half-space5 and focus
on the purely diffusive case, a combination that appears absent from the existing literature.

Moreover, our setting fundamentally differs from free boundary problems, where the domain
evolution is governed by the solution itself through interface conditions or conservation laws.
Instead, in our case, the boundary motion is externally prescribed—fully independent of the
solution—and thus acts as an exogenous constraint on the population.

Altogether, our framework gives rise to qualitatively distinct dynamics: species must cope
with a nonlinearly receding environment rather than follow a linearly translating habitat. Far
from being purely theoretical, these dynamics have concrete counterparts in real-world ecological
settings. In the context of population dynamics, our model can represent environments evolving
under disruptive influences such as forest fires [28], rising sea levels [27, 29], melting ice [30],
and declining snow cover [14]—all of which progressively erode the space available to biological
communities. In such scenarios, both the geometry and the location of the habitable space evolve
over time, often in nontrivial ways. Our setting, centered on a single moving boundary, captures
the essence of these spatial constraints while remaining analytically tractable. It thus provides
an insightful theoretical lens for understanding the survival and dispersal challenges faced by
species in receding habitats.

2 Main results
By performing the change of variable

v(t, x) := u(t, x+ b(t)), (2.1)

we reformulate (1.1) as the following problem{
∂tv = d∂xxv + b′(t)∂xv, t > 0, x > 0,
−d∂xv = b′(t)v, t > 0, x = 0,

(2.2)

posed on the static half-space R+, with initial condition v|t=0 = u0 =: v0. From now on, the
discussion is framed entirely in terms of the transformed variable v rather than the original
function u.

Assuming v0 is bounded, compactly supported, and nonnegative in R+—or more generally
belongs to L1(R+) ∩ L∞(R+)—the global well-posedness of (2.2) follows from classical results in
nonautonomous semigroup theory [32], which guarantee the existence and uniqueness of a mild
solution v ∈ C([0,∞);L1(R+) ∩ L∞(R+)). Furthermore, standard parabolic regularity theory
implies that this mild solution is, in fact, smooth for positive times: v ∈ C1,2

t,x ((0,∞) × R+), so
that v is a classical solution to (2.2) for all t > 0. Finally the problem satisfies the comparison
principle, which ensures in particular that v remains nonnegative whenever v0 is nonnegative.

5Owing to its fundamental structure, the half-space is the only connected open subset of R possessing a single
boundary point. This property eliminates the interference that would arise from the presence of a second boundary,
making the half-space a natural setting for isolating and quantifying population–boundary interactions.
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Our first main result provides an explicit formula for the solution v to (2.2) when β = 1. This
case corresponds to the linear regime of the moving boundary, where the boundary position grows
linearly in time—namely b(t) = ct. This explicit representation of v enables a sharp analysis of
its long-time behavior, revealing fast convergence toward a nontrivial steady state.

Theorem 2.1 (Fundamental solution and asymptotic behavior for β = 1) Assume that c > 0
and b(t) = ct. Let v be the unique solution to (2.2) starting from bounded, compactly supported,
and nonnegative initial condition v0. Then the two following points hold true:

(i) For any t > 0 and x ∈ R+, the solution v is explicitly given by

v(t, x) =
∫ ∞

ξ=0
H(t, x, ξ) v0(ξ) dξ, (2.3)

where the fundamental solution H can be written in terms of the well-known heat kernel,
G(t,X) = e−X2/(4dt)/

√
4πdt, as

H(t, x, ξ) := G(t, x+ ct− ξ) +G(t, x+ ct+ ξ)e
c
d

ξ + c

d

∫ ∞

ω=ξ
G(t, x+ ct+ ω)e

c
d

ω dω. (2.4)

(ii) For any x ∈ R+, let
V (x) := M

c

d
e− c

d
x, (2.5)

then, there are two positive constants ℓ and k, such that

∥v(t, x) − V (x)∥L1
x(R+) ≤ ℓe−kt, ∀t > 0. (2.6)

The construction of the solution v in Theorem 2.1 (i) relies on an extension argument made
possible by the fact that (2.2) is autonomous when β = 1.

In (2.3)-(2.4), the fundamental solution H has an insightful stochastic interpretation. Indeed,
H(t, x, ξ) represents the probability density of the trajectory Xt of an individual undergoing
reflected Brownian motion with constant drift on R+, starting from ξ ≥ 0. This setting is
analogous to that described by the probability kernel (1.6) associated with the Neumann heat
problem (1.4).

Beyond this interpretation, the explicit representation of the solution enables a detailed
quantitative analysis. Theorem 2.1 (ii) establishes the L1-convergence of the solution v(t, )
toward a nontrivial stationary state V at an exponential rate, which is particularly remarkable
given that diffusion-driven problems typically exhibit polynomial convergence [34]. This rapid
stabilization highlights that the moving boundary not only induces mass accumulation but also
accelerates convergence toward the stationary profile by confining the individuals. It is worth
noting that such an exponential convergence rate is typical for the heat equation on bounded
intervals with Neumann boundary conditions. In our setting, the confinement induced by the
moving boundary then appears to recreate such a bounded-domain-like effect on the population.

It is also notable that the steady-state solution V is nontrivial, indicating that the population
does not vanish (as it does for classical diffusion equations on unbounded domains), but instead
persists and stabilizes into a stationary exponential distribution. This phenomenon reflects a
delicate balance between two opposing mechanisms: the tendency of individuals to disperse
through diffusion, and their accumulation near the boundary due to the advection induced by its
motion. The following heuristic perspective helps to further explain this balance: by splitting
the dynamics arising from (2.2)|b(t)=ct into a diffusive part:

∂tvdiff = d∂xxvdiff, (2.7)
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and an advective part:
∂tvadv = c∂xvadv, (2.8)

both associated with the same initial condition

vdiff|t=0(x) = vadv|t=0(x) = e− c
d

x,

we observe that the resulting solutions are exponentials translating in opposite directions:

vdiff(t, x) = e− c
d

(x−ct) and vadv(t, x) = e− c
d

(x+ct).

This symmetry elegantly reveals the natural compensation between diffusion and drift effects,
leading to convergence toward the exponential stationary state V (x) = Mc

d

√
vdiff(t, x) · vadv(t, x).

Finally, Theorem 2.1 provides a guiding framework for understanding more general regimes.
When the boundary speed is sublinear (β < 1), the solution is expected to exhibit dissipative
behavior, as carefully discussed in Proposition 2.2 and Theorem 2.3. In contrast, a superlinear
boundary motion (β > 1) is anticipated to induce strong concentration effects, whose detailed
analysis is deferred to future work due to intricate analytical challenges (see Remark 2.4).

We now proceed with our second main result, describing the convergence of the solution
to (2.2) toward self-similar profiles, for any β ∈ [0, 1]. Let us start with the particular case
β = 0, in which (2.2) reduces to the classical Neumann heat equation (1.4) in R+. The following
proposition, well-known in the literature (see [34, Theorem 4.1] for instance), describes the
corresponding sharp asymptotic behavior of the solution.

Proposition 2.2 (Asymptotic behavior for β = 0) Let v be the unique solution to (1.4) starting
from bounded, compactly supported, and nonnegative initial condition v0. Then there exists ℓ > 0
such that ∥∥∥∥v(t, x) − 1√

1 + t
W
( x√

1 + t

)∥∥∥∥
L1

x(R+)
≤ ℓ√

1 + t
, ∀t > 0, (2.9)

where W (y) = W (0) exp
(
−y2

4d

)
for any y ∈ R+, with W (0) ≥ 0 uniquely determined so that the

total mass of the self-similar profile W equals M .

Building upon the case β = 0, we extend the analysis to general β ∈ (0, 1], which leads to our
main asymptotic result.

Theorem 2.3 (Asymptotic behavior for β ∈ (0, 1]) Assume that b(t) = c[(1+ t)β −1] with c > 0
and β ∈ (0, 1]. Let v be the unique solution to (2.2) starting from bounded, compactly supported,
and nonnegative initial condition v0. Then the asymptotic behavior of v is characterized by
convergence to self-similar profiles, according to the three following regimes:

(i) If 0 < β < 1/2 (sub-critical regime), then there exists ℓ > 0 such that∥∥∥∥v(t, x) − 1√
1 + t

W
( x√

1 + t

)∥∥∥∥
L1

x(R+)
≤ ℓ

(1 + t)
1
4 − β

2
, ∀t > 0, (2.10)

where W (y) = W (0) exp
(
−y2

4d

)
for any y ∈ R+.

(ii) If β = 1/2 (critical regime), then there exists ℓ > 0 such that∥∥∥∥v(t, x) − 1√
1 + t

W
( x√

1 + t

)∥∥∥∥
L1

x(R+)
≤ ℓ√

1 + t
, ∀t > 0, (2.11)

where W (y) = W (0) exp
(
−y2

4d − cy
2d

)
for any y ∈ R+.
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(iii) If 1/2 < β ≤ 1 (super-critical regime), then there exists ℓ > 0 such that∥∥∥∥v(t, x) − b′(t)
cβ

W

(
b′(t)
cβ

x

)∥∥∥∥
L1

x(R+)
≤ ℓ log(1 + t)

(1 + t)β− 1
2
, ∀t > 1, (2.12)

where W (y) = W (0) exp
(
− cβ

d y
)

for any y ∈ R+.

In each case above, W (0) ≥ 0 is the uniquely determined constant such that the total mass of the
self-similar profile W equals M .

Theorem 2.3 reveals three distinct regimes, governed by the value of the parameter β, as
further illustrated in Figure III. One of the main ingredients of its proof is to introduce a general
self-similar transformation of the form

v(t, x) = f(t) · w
(
g(t), f(t)x

)
, (2.13)

where the scaling functions f(t) and g(t) are determined according to the different regimes, see
Section 3 and Section 5. Under such scaling, the problem satisfied by w becomes a Fokker–Planck
type equation:

∂τw = ∂y [D∂yw + ∂yΦ(τ, y)w] , τ > 0, y > 0, (2.14)

where the time-dependent potential Φ(τ, y) stabilizes over time toward a stationary potential
Φ∞(y). Depending on the parameter β, this stationary potential Φ∞ is either quadratic or linear
in y, and the stationary solutions of this resulting problem (2.14) are given by:

W (y) = W (0)e− 1
D

Φ∞(y),

consequently leading to Gaussian, exponential, or mixed profiles, according to the precise form
of Φ∞. It is worth noting that f(t) ≡ 1 and g(t) = t in the linear regime β = 1, so that the
self-similar transformation (2.13) reduces to the identity and the unknown v and w coincide.

As anticipated by the stochastic perspective introduced in Section 1, the model displays a
sharp transition at the critical value β = 1/2. At this threshold, the boundary drift is of magnitude
O(

√
t), exactly matching the mean displacement of a reflected Brownian particle on R+. This

alignment marks the onset of significant boundary effects. In particular, it triggers a self-similar
intermediate profile, characterized by a Gaussian shape modulated by an exponential factor,
reflecting the emergence of a competition between diffusion and boundary-driven accumulation.
In the sub-critical regime β ∈ (0, 1

2), the self-similar profiles adopt Gaussian shapes—exactly as
for the solutions to the classical heat equation on R+ with Neumann boundary condition, see
Proposition 2.2. This point is consistent with the weak interactions between the particles and the
boundary discussed in Section 1, see Figure II (a)(b). By contrast, in the super-critical regime
β ∈ (1

2 , 1], the boundary outpaces the diffusive scaling, giving rise to exponential self-similar
profiles with a noticeably heavier tail. This highlights the strong interaction between the moving
boundary and the diffusion process, see Figure II (c).

We also point out that, when β = 1, Theorem 2.3 (iii) provides a polynomial convergence
rate, which is significantly less optimal than the sharp exponential convergence exhibited in
Theorem 2.1 (ii). When β = 1/2, the convergence rate we obtain coincides with that of the
Neumann heat equation (see Proposition 2.2), for which the entropy method is known to yield
the sharp decay rate (see Remark 3.3). Since our proof strategy relies on the same type of
entropy arguments—involving only the logarithmic Sobolev and Csiszár–Kullback inequalities,
without any crude estimates—it is reasonable to believe that the resulting decay rate is also
sharp in this critical case. For β < 1/2, we do not expect better rates with our technique, as
explained in subsection 3.3—see (3.14)-(3.15).
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Lastly, let us emphasize that, for 0 ≤ β < 1, the solution v tends to vanish as a result of the
decaying boundary speed b′(t). Varying β from 0 to 1 thus provides a clear depiction of how the
influence of the moving boundary counteracts diffusion up to the limiting case β = 1, where the
balance is achieved between the dispersive effect of diffusion and the aggregative effect of the
moving boundary.

Figure III — long-time behavior of the solutions to (1.1) regarding different regimes of β.
We recall that the moving boundary b(t) (depicted by the purple vertical lines) behaves asymptotically like ctβ

as t → ∞. A transition in the shape of the asymptotic profiles occurs at β = 1/2, shifting from Gaussian
to exponential. This threshold also marks a change in the L∞ decay rate, achieved by u(t, b(t)) = v(t, 0),
shifting from O(t−1/2) for β ∈ [0, 1

2 ] to O(tβ−1) for β ∈ [ 1
2 , 1]. As a complement to this macroscopic

viewpoint, typical individual trajectories are illustrated in Figure II for the cases β ∈ {0, 1
4 , 3

4 }, highlighting
the increasing influence of the moving boundary at the microscopic scale.

Remark 2.4 (On the case β > 1) It is worth noting that the super-critical self-similar rescaling
(5.1) remains valid for β > 1, and that the Cauchy problem (5.3) still governs the resulting
function w in this case. Stationary solutions with exponential decay therefore persist, exactly as in
the intermediate regime β ∈ (1

2 , 1]. Numerical experiments further suggest that, in this superlinear
setting, w(t, ) converges to such an exponentially decaying steady state. This behavior suggests
that the function v increasingly concentrates near the moving boundary over time, yet without
finite-time blow-up. Specifically, we anticipate the following approximate long-time behavior:

∥v(t, )∥L∞(R+) ≈ v(t, 0) ≈ b′(t)
cβ

= (1 + t)β−1.
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A key point is that the coefficient η(τ) appearing in problem (5.3), and given by (5.4):

η(τ) = β − 1
1 + (2β − 1)τ ,

changes sign as β crosses the value 1. This sign change drastically alters the behavior of the
drift term in (5.3), and introduces new analytical challenges. To be more specific, when β ≤ 1,
the drift cβ − η(τ)y consistently drives the population toward the boundary, thereby promoting
mass concentration near y = 0. In contrast, for β > 1, the drift points toward the boundary only
for small values of y (where cβ − η(τ)y remains nonnegative). As y increases, the influence of
−η(τ)y eventually dominates, causing the drift to reverse and effectively driving the population
away from the boundary. This subtle interplay between boundary accumulation and long-range
repulsion significantly complicates the analysis.

In particular, a major obstacle lies in controlling the first moment of the function w, for
which the standard techniques used for β ∈ (1

2 , 1] (such as the comparison principle and the
construction of supersolutions) fail, since the reversed sign of η(τ) turns our supersolutions into
subsolutions.

As the first moment directly impacts the upper bound of the convolution term in (5.8), it is
natural to first explore whether the strategy developed for β ∈ (1

2 , 1] can be adapted to recover a
suitable bound on that moment. Otherwise, a completely different approach will be required.

We are nonetheless convinced that the first moment is decisive for the long-time dynamics,
as clearly evidenced in related studies by Calvez et al. [12] and Lepoutre et al. [26]. In those
works, explicit evolution equations for the first moment turned out to be significantly useful for
the analysis of convergence and potential blow-up behaviors. In our model, however, the drift
varies in both space and time, which prevents the direct application of these earlier strategies.

Although the analytical framework developed here provides a solid foundation, a refined
analysis is still needed to tackle the sign-changing drift and its influence on the first-moment
dynamics. We leave this challenging question for future work, confident that sharp bounds on the
first moment will ultimately yield a complete description of the super-linear regime.

Strategy of the proofs The proof of Theorem 2.1 (i) is based on the explicit construction
of the solution via an extension method: we extend the initial data v0 to the whole real line,
choosing the extension so that, under the evolution governed by ∂t = d∂xx + c∂x, the resulting
solution satisfies the Robin boundary condition at x = 0 for all t > 0. We then recover the
desired solution by restricting the extended solution to the positive half-line R+, and a detailed
manipulation of integrals reveals the explicit form of the fundamental solution H(t, x, ξ), as given
in (2.4).

In turn, the explicit representation of the solution allows for a precise analysis of its long-time
behavior, as stated in Theorem 2.1 (ii). By carefully analyzing the structure of the fundamental
solution, we derive L1-estimates for v(t, ) − V demonstrating exponential convergence toward
the stationary profile.

As already explained, Theorem 2.3 is grounded on a self-similar change of variables—see
(2.13). When b(t) is of order O(

√
t), namely β ≤ 1/2, we use the parabolic scaling τ = log

√
1 + t

and y = x√
1+t

, and study the rescaled density w satisfying

v(t, x) = 1√
1 + t

w
(

log
√

1 + t,
x√

1 + t

)
.

The distance between w and the associated stationary profile W is then measured by means of
the Boltzmann relative entropy [34] defined by

H(w|W ) :=
∫ ∞

0
w(τ, y) log w(τ, y)

W (y) dy.

10
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As in the case of the heat equation, this functional can be differentiated with respect to τ . The
strict uniform convexity of the quadratic potential Φ(τ, y) (see (2.14)) then allows us to apply
logarithmic Sobolev (Lemma 3.1) and Csiszár–Kullback (Lemma 3.2) inequalities to estimate
the entropy dissipation dH/dτ and establish convergence.

When β > 1/2, the change of variables is more delicate:

v(t, x) := b′(t)
cβ

w

(∫ t

s=0

[
b′(s)
cβ

]2
ds,

b′(t)
cβ

x

)
.

In this super-critical regime, our entropy approach breaks down, since the potential Φ in the
Fokker–Planck equation (2.14) loses its strict convexity as τ → ∞ and becomes linear, thus
preventing the use of the logarithmic Sobolev inequality.

Instead, our approach is based on the observation that the Fokker–Planck problem (5.3)
governing w can be regarded as the equation associated with β = 1 plus a vanishing perturbation
in the interior equation, which we treat as a source term using Duhamel’s principle [23]. The main
difficulty then lies in showing that the convolution term in (5.8), arising from the perturbative
source in Duhamel’s formula, vanishes in L1 as τ → ∞.

While this method ultimately allows us to establish the convergence of w toward W , it
crucially relies on an a priori control of the first moment of the solution—which becomes the
main obstruction when β > 1 (see Remark 2.4).

Perspectives for future research In this paper, we focus specifically on the purely diffusive
mechanism in the presence of a moving boundary. This simple setting exhibits a surprisingly rich
variety of behaviors—as concisely illustrated in Figure III—and paves the way toward the study
of more complex nonlinear and density-dependent models, such as reaction–diffusion equations:{

∂tu = d∂zzu+ f(u), t > 0, z > b(t),
−d∂zu = b′(t)u, t > 0, z = b(t).

(2.15)

For instance, understanding the L∞ decay rate of the diffusive solutions is essential for
studying the viability of biological populations when the reaction term takes the degenerate
monostable form [6, 21]

f(u) = u1+p(1 − u), p ≥ 0, (2.16)

This reaction function f models a well-known ecological phenomenon of growth difficulty at low
densities, known as the Allee effect [3].6

In the context of our dynamic domain, the speed of the moving boundary is expected to play
a crucial role in determining population survival. In particular, it may induce ecological rescues
in the presence of an Allee effect. In such cases, populations that would otherwise become extinct
in static domains could survive by aggregating against the moving boundary, thus benefiting
from enhanced growth conditions.

Conversely, a fast-moving boundary may instead become harmful to the population, amplifying
intraspecific competition. This phenomenon, captured by the negative term −u2+p in (2.16), may
ultimately drive the population to extinction, as a result of excessive aggregation of individuals
in the vicinity of the boundary. Importantly, this risk persists even in the classical KPP case
f(u) = u(1 − u), i.e., when p = 0 in (2.16), in sharp contrast with the well-known hair-trigger
effect—namely the success of invasion in unbounded domains.

6The exponent p ≥ 0 quantifies the strength of the low-density growth limitation (Allee effect), with p = 0
(KPP case) corresponding to the absence of such limitation.
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As a result, the relationship between boundary speed and population persistence may become
non-monotonic, since extinction may occur at both very low and very high speeds, while
intermediate speeds could allow for survival. It is worth mentioning that similar non-monotonic
phenomena between initial fragmentation and success rate of invasion in the presence of an
Allee effect have already been documented in previous works [22, 2].

Beyond deterministic dynamics, adopting a stochastic perspective on the underlying micro-
scopic diffusive process could be highly valuable for better understanding the evolution of the
first moment of the solution, i.e., the mean position of an individual. Such an approach would
complement our deterministic analysis and may offer new insights into the dynamics, particularly
in the superlinear regime β > 1—whose analytical understanding remains an open challenge
(see Remark 2.4).

These directions naturally emerge from our analysis and will be the subject of continued
investigation.

Outline of the paper We begin with the critical and sub-critical regimes β ≤ 1/2 in Section 3,
where we prove the convergence of the solution v toward Gaussian and mixed self-similar profiles
via an entropy method. Then, Section 4 is devoted to the linear regime β = 1, giving the explicit
expression of the solution and establishing the asymptotic behavior of the solution v. Lastly, we
address in Section 5 the super-critical regime β > 1/2, proving the convergence of the solution v
toward exponential self-similar profiles using Duhamel’s principle and appropriate estimates on
the arising convolution term.

3 The sub-critical and critical regimes: 0 ≤ β ≤ 1/2
In this section, we focus on the diffusive scale b(t) = O(

√
t). We prove that the solution converges

at a polynomial rate to some self-similar profile, based on entropy dissipation arguments. This
corresponds to Theorem 2.3 (i) and (ii) that are treated in subsection 3.3 and subsection 3.2,
respectively.

3.1 Self-similar rescaling for 0 ≤ β ≤ 1/2

We make the change of variable

τ := log
√

1 + t, y := x√
1 + t

, v(t, x) = 1√
1 + t

w
(

log
√

1 + t,
x√

1 + t

)
. (3.1)

Then the function w satisfies the following problem ∂τw = 2d∂yyw + ∂y
(
(y + ψ(τ))w

)
, τ > 0, y > 0,

−2d∂yw(τ, 0) = ψ(τ)w(τ, 0), τ > 0,
(3.2)

with w0 = v0, where
ψ(τ) := 2cβeτ(2β−1). (3.3)

We notice that when β = 1/2, we have ψ(τ) ≡ c, and the associated stationary problem reads{
2d∂yyW + ∂y

(
(y + c)W

)
= 0, y > 0,

−2d∂yW (0) = cW (0).
(3.4)

12
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When β ∈ [0, 1
2), we find that ψ ≡ 0 if β = 0, and ψ(τ) = 2cβeτ(2β−1) vanishes as τ → ∞ if

β < 1/2. Therefore, the corresponding stationary problem writes in this case

{
2d∂yyW + ∂y(yW ) = 0, y > 0,

∂yW (0) = 0.
(3.5)

It then follows that for y ≥ 0,

W (y) =


W (0) exp

(
− y2

4d − cy

2d

)
, when β = 1/2,

W (0) exp
(

− y2

4d

)
, when β ∈ [0, 1/2),

(3.6)

where in each case W (0) ≥ 0 is a uniquely determined constant such that the mass of the function
W equals M , i.e.,

∫∞
0 W (y)dy = M .

The main strategy in dealing with the diffusive regime is the entropy approach, together with
the logarithmic Sobolev inequality [24, 7] and the Csiszár–Kullback inequality [16, 15], which we
recall below.

Lemma 3.1 (Logarithmic Sobolev inequality [31]) Let F (y) = exp(−Φ(y)) be a smooth density
on R+ and assume that there is a constant ρ such that Φ′′(y) ≥ ρ > 0 for any y > 0. Then for
any nonnegative f ∈ L1

y(R+) satisfying
∫∞

0 f(y)dy =
∫∞

0 F (y)dy, we have

∫ ∞

0
f(y) log

(
f(y)
F (y)

)
dy ≤ 1

2ρ

∫ ∞

0
f(y)

(
∂y log

(
f(y)
F (y)

))2
dy. (3.7)

Lemma 3.2 (Csiszár–Kullback inequality [26]) For any nonnegative functions f, F ∈ L1
y(R+)

such that
∫∞

0 f(y)dy =
∫∞

0 F (y)dy = M , we have that

∥f − F∥2
L1

y(R+) ≤ 2M
∫ ∞

0
f(y) log

(
f(y)
F (y)

)
dy. (3.8)

3.2 Long-time behavior for β = 1/2

Proof of Theorem 2.3 (ii). Since β = 1/2, equation (3.2) can be reduced to

{
∂τw = 2d∂yyw + ∂y

(
(y + c)w

)
, τ > 0, y > 0,

−2d∂yw(τ, 0) = cw(τ, 0), τ > 0,
(3.9)

with w0 = v0, for which the corresponding stationary solution W is given in (3.6). The goal is to
establish the convergence of the solution w to problem (3.9) toward W .

By introducing the relative entropy associated with (3.9) as

H(w|W ) :=
∫ ∞

0
w(τ, y) log

(
w(τ, y)
W (y)

)
dy ≥ 0, ∀τ ≥ 0, (3.10)

which is nonnegative and vanishes if and only if w = W (due to Jensen’s inequality), we find
that
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d
dτH(w|W ) =

∫ ∞

0
∂τw(τ, y)

(
log(w(τ, y)) + 1

4dy
2 + c

2dy
)

dy (3.11)

=
∫ ∞

0
∂y

(
2dwy(τ, y) + (y + c)w(τ, y)

)(
log(w(τ, y)) + 1

4dy
2 + c

2dy
)

dy

= −
∫ ∞

0

(
2dwy(τ, y) + (y + c)w(τ, y)

)(∂yw(τ, y)
w(τ, y) + 1

2d(y + c)
)

dy

= −
∫ ∞

0

[
2d∂yw(τ, y)2

w(τ, y) + 2(y + c)∂yw(τ, y) + 1
d

(y + c)2w(τ, y)
]

dy

= −
∫ ∞

0
w(τ, y)

(√
2d∂y log(w(τ, y)) + 1√

2d
(y + c)

)2
dy

= −2dI(w|W ), (3.12)

where I(w|W ) is called the Fisher information, given by

I(w|W ) :=
∫ ∞

0
w(τ, y)

(
∂y log

(
w(τ, y)
W (y)

))2
dy ∀τ ≥ 0.

Notice that W ′′(y) = 1
2d , then it follows from the Logarithmic Sobolev inequality that

H(w|W ) ≤ dI(w|W ). (3.13)

Therefore, we infer from (3.12) and (3.13) that

d
dτH(w|W ) + 2H(w|W ) = −2dI(w|W ) + 2H(w|W ) ≤ 0,

which implies from Grönwall’s lemma that

H(w|W ) ≤ H(w0|W )e−2τ .

Using the Csiszár–Kullback inequality yields that∥∥w(τ, y) −W (y)
∥∥

L1
y(R+) ≤

√
2MH(w0|W )e−τ , ∀τ ≥ 0.

Turning back to function v using (3.1), we finally obtain (2.11) with ℓ :=
√

2MH(w0|W ). This
concludes the proof of Theorem 2.3 (ii).

3.3 Long-time behavior for 0 ≤ β < 1/2
Proof of Theorem 2.3 (i). Similar to the case of β = 1/2, again we introduce for any τ ≥ 0
the relative entropy:

H(w|W ) =
∫ ∞

0
w(τ, y) log

(
w(τ, y)
W (y)

)
dy,

and the Fisher information:

I(w|W ) =
∫ ∞

0
w(τ, y)

(
∂y log

(
w(τ, y)
W (y)

))2
dy

= −
∫ ∞

0

[
∂yw(τ, y)2

w(τ, y) + y

d
∂yw(τ, y) + y2

4d2w(τ, y)
]

dy.
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It follows that

d
dτH(w|W ) =

∫ ∞

0
∂τw(τ, y)

(
log(w(τ, y)) + 1

4dy
2
)

dy

=
∫ ∞

0
∂y

(
2dwy(τ, y) + (y + ψ(τ))w(τ, y)

)(
log(w(τ, y)) + 1

4dy
2
)

dy

= −
∫ ∞

0

(
2dwy(τ, y) + (y + ψ(τ))w(τ, y)

)(∂yw(τ, y)
w(τ, y) + y

2d

)
dy

= −
∫ ∞

0

[
2d∂yw(τ, y)2

w(τ, y) +
(
2y + ψ(τ)

)
∂yw(τ, y) + y

2d
(
y + ψ(τ)

)
w(τ, y)

]
dy

= −2d
∫ ∞

0

(
∂yw(τ, y)2

w(τ, y) + y

d
∂yw(τ, y) + y2

4d2w(τ, y)
)

+ ψ(τ)
(
∂yw(τ, y) + y

2dw(τ, y)
)

dy

= −2dI(w|W ) + ψ(τ)
(
w(τ, 0) − 1

2d

∫ ∞

0
yw(τ, y) dy

)
. (3.14)

Remark 3.3 In the case β = 0, (3.14) simply reduces to d
dτ H(w|W ) = −2dI(w|W ) by noticing

that ψ(τ) ≡ 0. Following the lines in the case β = 1/2, we obtain in this case that

∥∥w(τ, y) −W (y)
∥∥

L1
y(R+) ≤

√
2MH(w0|W )e−τ , ∀τ ≥ 0.

This produces the optimal convergence rate O(t−1/2) as stated in Proposition 2.2 for the Neumann
heat equation.

It remains to deal with the case β ∈ (0, 1
2). Since the precise behavior of the quantity

w(τ, 0) − 1
2d

∫∞
0 yw(τ, y)dy in (3.14) remains unknown, we make a rough estimate by considering

the worst-case scenario, relying on the nonnegativity of both ψ(τ) and the first moment of w.
This leads to the inequality:

d
dτH(w|W ) ≤ −2dI(w|W ) + ψ(τ)w(τ, 0). (3.15)

The Logarithmic Sobolev inequality leads to H(w|W ) ≤ dI(w|W ) which together with (3.15)
gives

d
dτH(w|W ) ≤ −2H(w|W ) + ψ(τ)w(τ, 0). (3.16)

Before proceeding, let us give a control of w(τ, 0).

Lemma 3.4 Assume that β ∈ (0, 1
2) and that w0 is bounded, compactly supported, and nonneg-

ative in R+, then there exists Λ > 0 such that w(τ, 0) < Λ for every τ ≥ 0.

Proof of Lemma 3.4. The proof follows from a comparison argument. Define

w(τ, y) := exp
(

−y2

4d − ψ(τ)y
2d

)
, ∀τ ≥ 0, ∀y ≥ 0,

then we can easily check that, for any τ > 0 and y > 0,

∂τw − 2d∂yyw − ∂y
(
(y + ψ(τ))w

)
= −ψ′(τ)

2d yw(τ, y) = 2cβ(1 − 2β)
2d eτ(2β−1)yw ≥ 0,
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and
−2d∂yw(τ, 0) − ψ(τ)w(τ, 0) = 0.

In addition, we can choose Λ > 0 large such that Λw0(y) ≥ w0(y) = v0(y) for y ∈ R+. We
then conclude that Λw is a supersolution to problem (3.2) in [0,∞) × R+ and the comparison
principle implies that 0 ≤ w(τ, y) ≤ Λw(τ, y) in [0,∞) × R+. This implies in particular that
0 ≤ w(τ, 0) ≤ Λw(τ, 0) = Λ for every τ ≥ 0.

Now we turn back to (3.16) and obtain from Lemma 3.4 that

d
dτH(w|W ) ≤ −2H(w|W ) + ψ(τ)Λ.

This ordinary differential inequality can be solved by the method of variation of parameters:

H(w|W ) ≤ H(v0|W )e−2τ + Λe−2τ
∫ τ

0
ψ(s)e2s ds,

which together with (3.3) implies that

H(w|W ) ≤ H(v0|W )e−2τ + 2cβΛe−2τ
∫ τ

0
es(2β−1)e2s ds

≤ H(v0|W )e−2τ + 2cβΛ
2β + 1

(
e(2β−1)τ − e−2τ

)
=
(
H(v0|W ) − 2cβΛ

2β + 1

)
e−2τ + 2cβΛ

2β + 1e
(2β−1)τ

≤ ke(2β−1)τ ,

with k := H(v0|W ) + 2cβΛ
2β+1 > 0.

It then follows from the Csiszár–Kullback inequality that

∥∥w(τ, y) −W (y)
∥∥

L1
y(R+) ≤

√
2Mke(β− 1

2 )τ , ∀τ > 0.

Therefore, turning back to the function v using (3.1), we obtain (2.10) with ℓ :=
√

2Mk. This
completes the proof of Theorem 2.3 (i).

4 The linear regime: β = 1

We consider here the linear case β = 1, corresponding to the moving boundary b(t) = ct. In this
regime, equation (2.2)|b(t)=ct simplifies to

{
∂tv = d∂xxv + c∂xv, t > 0, x > 0,
−d∂xv = cv, t > 0, x = 0.

(4.1)

This section is dedicated to the proof of Theorem 2.1 which splits in two parts. The first concerns
the explicit construction of the solution to (4.1), relying on suitable extension arguments. The
second establishes the asymptotic L1-convergence of v(t, ) toward the exponential stationary
profile V , based on a detailed analysis of the fundamental solution. These two aspects are treated
in subsection 4.1 and subsection 4.2, respectively.
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4.1 Fundamental solution for β = 1
Proof of Theorem 2.1 (i). We anticipate an extension ṽ0 of v0 in {x < 0}, such that the
solution ṽ to {

∂tṽ = d∂xxṽ + c∂xṽ, t > 0, x ∈ R,
ṽ|t=0 = ṽ0, t = 0, x ∈ R,

(4.2)

satisfies ṽ(t, x)|x>0 = v(t, x). To achieve this, we need to check that the flux condition −d∂xṽ = cṽ
is verified at x = 0 for any positive time7—this recovers the Robin boundary condition, namely
second line in (4.1). Explaining the solution ṽ to (4.2) by convolving v0 with the biased heat
kernel G(t, x+ ct), this condition reads∫ ∞

ξ=0
G(t, ct+ ξ)

[
cṽ0(−ξ) + d∂xṽ0(−ξ)

]
+G(t, ct− ξ)

[
cv0(ξ) + d∂xv0(ξ)

]
dξ = 0,

and can be recast, thanks to the algebraic trick G(t, ct+ ξ) = G(t, ct− ξ)e− c
d

ξ, as∫ ∞

ξ=0
G(t, ct− ξ)

[
e− c

d
ξ(cṽ0(−ξ) + d∂xṽ0(−ξ)

)
+
(
cv0(ξ) + d∂xv0(ξ)

)]
︸ ︷︷ ︸

We ask then the vanishing of this quantity for all ξ > 0.

dξ = 0.

Therefore, for x < 0, ṽ0 should solve the following linear ODE: d∂xṽ0(x) + cṽ0(x) = −e− c
d

x
[
d∂xv0(−x) + cv0(−x)

]
, x < 0,

ṽ0(0) = v0(0), x = 0,
(4.3)

where the second line ensures the compatibility of ṽ0 regarding the Robin boundary condition at
x = 0. As a result, the extended initial data ṽ0 is given by

ṽ0(x) =

 v0(x), if x ≥ 0,

e− c
d

x
[
v0(−x) + c

d

∫−x
0 v0(ξ) dξ

]
, if x ≤ 0.

(4.4)

We can now provide a first expression for v:

v(t, x) =
∫ ∞

ξ=0
G(t, x+ ct− ξ)v0(ξ) dξ +

∫ ∞

ξ=0
G(t, x+ ct+ ξ)e

c
d

ξv0(ξ) dξ (4.5)

+ c

d

∫ ∞

ξ=0
G(t, x+ ct+ ξ)e

c
d

ξ
∫ ξ

ω=0
v0(ω)dω dξ, (4.6)

which can be recast into (2.3) with the kernel H given by (2.4) by using Fubini’s theorem on
(4.6). This concludes the proof of Theorem 2.1 (i).

4.2 Long-time behavior for β = 1
Proof of Theorem 2.1 (ii). This proof is divided into two steps. We show first that there
exist some positive constants ℓ̃, k̃ and t0 such that

∥v(t, x) − V (x)∥L1
x(R+) ≤ ℓ̃e−k̃t, ∀t > t0. (4.7)

We prove then the uniform boundedness of v which enables, combined with (4.7), to reach (2.6)
for any t > 0.

7Checking this condition for all positive times is essential, as it is precisely what allows the extension argument
to succeed when β = 1—in which case equation (2.2) is autonomous.
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As a stationary solution to (4.1), the function V , defined in (2.5), can be rewritten using
(4.5)-(4.6) as

V (x) =
∫ ∞

ξ=0
G(t, x+ ct− ξ)V (ξ) dξ +

∫ ∞

ξ=0
G(t, x+ ct+ ξ)e

c
d

ξV (ξ) dξ

+ c

d

∫ ∞

ξ=0
G(t, x+ ct+ ξ)e

c
d

ξ
∫ ξ

ω=0
V (ω)dω dξ,

for any t > 0. This equality, combined with (4.5)-(4.6), allows us to write v(t, x) − V (x) as

v(t, x) − V (x) =
∫ ∞

ξ=0
G(t, x+ ct− ξ)(v0(ξ) − V (ξ)) dξ

+
∫ ∞

ξ=0
G(t, x+ ct+ ξ)e

c
d

ξ(v0(ξ) − V (ξ)) dξ

− c

d

∫ ∞

ξ=0
G(t, x+ ct+ ξ)e

c
d

ξ
∫ ∞

ω=ξ
(v0(ω) − V (ω))dω dξ.

Notice, in the last integral above, we replaced

∫ ξ

ω=0
(v0 − V ) by −

∫ ∞

ω=ξ
(v0 − V ),

owing to the fact that
∫∞

0 v0 =
∫∞

0 V . This is the only point of the proof where we use this
assumption. Taking now the L1-norm of v(t, ) − V , we have then

∥v(t, x) − V (x)∥L1
x(R+) ≤

∫ ∞

ξ=0
|v0(ξ) − V (ξ)|

∫ ∞

x=ct
G(t, x− ξ)dx dξ︸ ︷︷ ︸

=:I1(t)

+
∫ ∞

ξ=0
|v0(ξ) − V (ξ)| e

c
d

ξ
∫ ∞

x=ct
G(t, x+ ξ)dx dξ︸ ︷︷ ︸

=:I2(t)

+ c

d

∫ ∞

ξ=0

∫ ∞

ω=ξ
|v0(ω) − V (ω)| dω e

c
d

ξ
∫ ∞

x=ct
G(t, x+ ξ)dx dξ,︸ ︷︷ ︸

=:I3(t)

where we have performed the change of variable x̄ = x+ ct, and then renamed x̄ back to x, and
applied Fubini’s theorem to interchange the integration orders.

Our objective is now to bound I1, I2 and I3 from above. Before proceeding, let us state the
following lemma which we shall rely on in the next steps.

Lemma 4.1 For any t > 0, there holds

∫ ∞

x=ct
G(t, x− ξ) dx ≤ exp

[
−
(

c

2
√
d

√
t− ξ

2
√
dt

)2 ]
, ∀ξ ∈ (0, ct), (4.8)

e
c
d

ξ
∫ ∞

x=ct
G(t, x+ ξ) dx ≤ exp

[
−
(

c

2
√
d

√
t− ξ

2
√
dt

)2 ]
, ∀ξ ∈ (0,∞). (4.9)
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Proof of Lemma 4.1. Expanding the integral in the left-hand side of (4.8), we have, for any
ξ ∈ (0, ct),

∫ ∞

x=ct
G(t, x− ξ) dx = 1√

4πdt

∫ ∞

x=ct
exp

[
−
(

(x− ξ)2

4dt

)]
dx

= 1
2 erfc

(
c

2
√
d

√
t− ξ

2
√
dt

)
,

where we performed the change of variable x̄ = (x− ξ)/(2
√
dt), and then renamed x̄ back to x, to

transition from the first line to the second. Now, since c
2
√

d

√
t− ξ

2
√

dt
is positive (as 0 < ξ < ct),

and using the fact that 1
2erfc(γ) ≤ exp(−γ2) for any γ > 0, we finally reach (4.8).

Similarly to the proof of (4.8), we have

e
c
d

ξ
∫ ∞

x=ct
G(t, x+ ξ) dx = e

c
d

ξ

√
4πdt

∫ ∞

x=ct
exp

[
−
(

(x+ ξ)2

4dt

)]
dx

= e
c
d

ξ

2 erfc
(

c

2
√
d

√
t+ ξ

2
√
dt

)

≤ e
c
d

ξ exp
[

−
(

c

2
√
d

√
t+ ξ

2
√
dt

)2 ]

= exp
[

−
(

c

2
√
d

√
t− ξ

2
√
dt

)2 ]
,

which establishes (4.9).

We are now ready to begin estimating I1, I2, and I3.

• Control of I1(t). Splitting the integral
∫∞

ξ=0 into
∫ c

2 t

ξ=0 +
∫∞

ξ= c
2 t in the expression of I1, we

have

I1(t) =
∫ c

2 t

ξ=0
|v0(ξ) − V (ξ)|

∫ ∞

x=ct
G(t, x− ξ)dx dξ (4.10)

+
∫ ∞

ξ= c
2 t

|v0(ξ) − V (ξ)|
∫ ∞

x=ct
G(t, x− ξ)dx dξ. (4.11)

Now substituting (4.8) into (4.10), and noticing that
∫∞

x=ctG(t, x− ξ)dx ≤ 1 in (4.11) yields

I1(t) ≤
∫ c

2 t

ξ=0
|v0(ξ) − V (ξ)| × exp

[
−
(

c

2
√
d

√
t− ξ

2
√
dt

)2 ]
dξ +

∫ ∞

ξ= c
2 t

|v0(ξ) − V (ξ)| dξ (4.12)

≤ exp
[

− c2

16dt
] ∫ c

2 t

ξ=0
|v0(ξ) − V (ξ)| dξ +

∫ ∞

ξ= c
2 t

|v0(ξ) − V (ξ)| dξ.

Remember at this point that v0 is compactly supported. Hence, for t0 > 0 chosen sufficiently
large so that supp(v0) ∩ {ξ > c

2 t0} = ∅, we have, for any t > t0,

|v0(ξ) − V (ξ)| = |V (ξ)| =
∣∣∣∣∫ ∞

ω=0
v0(ω)dω

∣∣∣∣ cd e− c
d

ξ, ∀ξ > c

2 t.
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As a consequence,

I1(t) ≤ ∥v0 − V ∥L(R+) × e− c2
16d

t + ∥v0∥L1 ×
∫ ∞

ξ= c
2 t

c

d
e− c

d
ξ dξ

= ∥v0 − V ∥L(R+) × e− c2
16d

t + ∥v0∥L1 × e− c2
2d

t

≤ ℓ̃1e
−k̃1t, (4.13)

for some positive constants ℓ̃1 and k̃1.

• Control of I2(t). From (4.9) in Lemma 4.1, we have

I2(t) ≤
∫ ∞

ξ=0
|v0(ξ) − V (ξ)| × exp

[
−
(

c

2
√
d

√
t− ξ

2
√
dt

)2 ]
dξ,

≤
∫ c

2 t

ξ=0
|v0(ξ) − V (ξ)| × exp

[
−
(

c

2
√
d

√
t− ξ

2
√
dt

)2 ]
dξ +

∫ ∞

ξ= c
2 t

|v0(ξ) − V (ξ)| dξ,

which is precisely the right-hand-side of (4.12). Following then the same computation that
allowed to reach (4.13) in the control of I1, we get

I2(t) ≤ ℓ̃2e
−k̃2t, (4.14)

with (ℓ̃2, k̃2) = (ℓ̃1, k̃1).

• Control of I3(t). Similar arguments as in the controls of I1 and I2 yield

I3(t) =
∫ ∞

ξ=0

∫ ∞

ω=ξ
|v0(ω) − V (ω)| dω e

c
d

ξ
∫ ∞

x=ct
G(t, x+ ξ) dx dξ

≤
∫ ∞

ξ=0

∫ ∞

ω=ξ
|v0(ω) − V (ω)| dω × exp

[
−
(

c

2
√
d

√
t− ξ

2
√
dt

)2 ]
dξ

≤ e− c2
16d

t
∫ c

2 t

ξ=0

∫ ∞

ω=ξ
|v0(ω) − V (ω)| dω dξ + ∥v0∥L1

∫ ∞

ξ= c
2 t

∫ ∞

ω=ξ

c

d
e− c

d
ω dω dξ

≤ e− c2
16d

t
∫ ∞

ξ=0

∫ ∞

ω=ξ
|v0(ω) − V (ω)| dω dξ + d

c
∥v0∥L1e− c2

2d
t

= e− c2
16d

t
∫ ∞

ω=0
ω |v0(ω) − V (ω)| dω + d

c
∥v0∥L1e− c2

2d
t, (4.15)

where we applied Fubini’s theorem to derive the last line. It remains to observe that the integral
in (4.15) is bounded, since both |v0| and |V | have finite first moment. This results in

I3(t) ≤ ℓ̃1e
−k̃1t, (4.16)

for some positive constants ℓ̃3 and k̃3.
By gathering (4.13), (4.14) and (4.16), we can eventually find some positive constants ℓ̃, k̃

and t0 so that (4.7) holds for any t > t0.

We now focus on the boundedness of the solution v to extend (4.7) for any t > 0 (up to
change (ℓ̃, k̃) into (ℓ, k)).
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Owing to the comparison principle, there are two real constants λ ≤ λ such that v is
sandwiched between the two stationary solutions λ c

de
− c

d
x and λ c

de
− c

d
x, namely

λ
c

d
e− c

d
x ≤ v(t, x) ≤ λ

c

d
e− c

d
x, ∀t > 0, ∀x > 0.

Hence,
(λ−M) c

d
e− c

d
x ≤ v(t, x) − V (x) ≤ (λ−M) c

d
e− c

d
x, ∀t > 0, ∀x > 0,

and therefore, for Λ := max(|λ−M |, |λ−M |),

|v(t, x) − V (x)| ≤ Λ c

d
e− c

d
x ∀t > 0, ∀x > 0. (4.17)

Integrating the inequality (4.17) over R+ then yields

∥v(t, x)∥L1
x(R+) ≤ Λ, ∀t > 0. (4.18)

Finally, we only need to combine (4.7) and (4.18) to eventually establish (2.6) for any t > 0.
This concludes the proof of Theorem 2.1 (ii).

5 The super-critical regime: 1/2 < β ≤ 1
In this last section, we address the super-critical regime b(t) ∼ ctβ with β > 1/2. We prove that
the solution converges at a polynomial rate to some self-similar profile, based on Duhamel’s
principle and refined kernel estimates. This corresponds to point (iii) of Theorem 2.3.

5.1 Self-similar rescaling for β > 1/2
We make the change of variable

v(t, x) := b′(t)
cβ

w

( =:τ︷ ︸︸ ︷∫ t

s=0

[
b′(s)
cβ

]2
ds,

=:y︷ ︸︸ ︷
b′(t)
cβ

x

)
, (5.1)

where we recall that the function b is defined in (1.3), and that the function v satisfies the
equations given in (2.2). The relation between the variables t and τ writes then

τ = 1
2β − 1

[
(1 + t)2β−1 − 1

]
⇐⇒ t =

(
1 + (2β − 1)τ

) 1
2β−1 − 1, (5.2)

and the new unknown w satisfies the following problem
∂τw = d∂yyw + ∂y

[
(cβ − η(τ)y)w

]
, τ > 0, y > 0,

−d∂yw = cβw, τ > 0, y = 0,

w|τ=0 = v0, τ = 0, y > 0,

(5.3)

where
η(τ) := β − 1

1 + (2β − 1)τ . (5.4)

Notice that η(τ) has the sign of β− 1 and vanishes as τ → ∞ in the regime β > 1/2. As a result,
the stationary problem associated to (5.3) writes ∂yyW = − cβ

d ∂yW, y > 0,

−d∂yW |y=0 = cβW |y=0, y = 0,
(5.5)
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which gives for y > 0,
W (y) = W (0) exp

(
−cβ

d
y

)
, (5.6)

where W (0) is uniquely determined so that the total masses of v0 and W are equal, that is∫∞
0 W (y)dy = M .

5.2 Long-time behavior for 1/2 < β ≤ 1
Proof of Theorem 2.3 (iii). Observe in the first line of (5.3), that η(τ)∂y(yw) is a vanishing
perturbation as τ goes to +∞. Hence, it is natural to consider this quantity as an additional
source term to the following evolution problem

∂τ w̃ = d∂yyw̃ + cβ∂yw̃, τ > 0, y > 0,

−d∂yw̃|y=0 = cβw̃|y=0, τ > 0, y = 0,

w̃|τ=0 = v0, τ = 0, y > 0,

(5.7)

which has the same form as the linear case (4.1), with the constant c replaced by cβ now.
Therefore, it follows from Theorem 2.1 that there are some positive constants ℓ and k such that∥∥∥∥w̃(τ, y) − cβ

d

(∫ ∞

ξ=0
v0(ξ)dξ

)
︸ ︷︷ ︸

=:W (0)

e− cβ
d

y

∥∥∥∥
L1

y(R+)
≤ ℓe−kτ , ∀τ > 0.

As a consequence, to establish (2.12), we only need to bound ∥w(τ, y) − w̃(τ, y)∥L1
y(R+) which

can be rewritten with the Duhamel’s principle [23] as

∥w(τ, y) − w̃(τ, y)∥L1
y(R+) =

∥∥∥∥∫ τ

s=0
Ss

[
− η(τ − s)∂y(yw(τ − s, y))

]
ds
∥∥∥∥

L1
y(R+)

(5.8)

where (Ss)s>0 is the C0-semigroup on L1
y(R+) associated with the linear problem (5.7). Expanding

the expression of this semigroup with the fundamental solution H (2.4) yields

∥w(τ, y) − w̃(τ, y)∥L1
y

≤
∫ τ

s=0

∣∣∣η(τ − s)
∣∣∣ ∫ ∞

y=0

∣∣∣∣
=:I(τ,s,y)︷ ︸︸ ︷∫ ∞

ξ=0
−H(s, y, ξ)∂ξ[ξw(τ − s, ξ)]dξ

∣∣∣∣ dy︸ ︷︷ ︸
=:J(τ,s)

ds. (5.9)

Integrating I by parts gives

I(τ, s, y) =
∫ ∞

ξ=0
∂ξH(s, y, ξ)[ξw(τ − s, ξ)] dξ,

where ∂ξH can be computed from the expression (2.4) of H (with c replaced by cβ) :

∂ξH(s, y, ξ) = 1
2ds

√
4πds

[
(y + cβs− ξ)e− (y+cβs−ξ)2

4ds − (y + cβs+ ξ)e− (y+cβs+ξ)2
4ds e

cβ
d

ξ
]
.

Hence, by Fubini’s theorem,

J(τ, s) ≤
∫ ∞

ξ=0

ξw(τ − s, ξ)
2ds

√
4πds

∫ ∞

y=0

[
|y + cβs− ξ| e− (y+cβs−ξ)2

4ds + (y + cβs+ ξ)e− (y+cβs+ξ)2
4ds e

cβ
d

ξ
]

dy︸ ︷︷ ︸
=:K(τ,s,ξ)

dξ,
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where K can be bounded as follows

K(τ, s, ξ) =
∫ ∞

ω=cβs−ξ
|ω| e− ω2

4ds dω + e
cβ
d

ξ
∫ ∞

ω=cβs+ξ
ωe− ω2

4ds dω

≤
∫
R

|ω| e− ω2
4ds dω + 2ds e

cβ
d

ξe− (cβs+ξ)2
4ds

= 4ds+ 2ds e− (cβs−ξ)2
4ds

≤ 6ds.

As a result
J(τ, s) ≤ 3√

4πds

∫ ∞

ξ=0
ξw(τ − s, ξ) dξ. (5.10)

To proceed with our analysis, we need to establish a uniform upper bound on the first moment
of w:

Lemma 5.1 (Upper bound on the first moment of w) Assume that β ∈ (1
2 , 1] and that v0 is

bounded, compactly supported, and nonnegative in R+. Then there exists Λ > 0, depending on c,
d, β, ∥v0∥L∞ and max(supp(v0)), such that∫ ∞

ξ=0
ξw(τ, ξ) dξ ≤ Λ, ∀τ > 0.

Proof of Lemma 5.1. The proof follows from a comparison argument. Define, for λ > 0,

w(τ, y) := λ exp
(

−cβ

d
y + η(τ)

2d y2
)
, τ > 0, y > 0. (5.11)

Then we can check that, for any τ > 0 and y > 0,

Lw := ∂tw − d∂yyw − ∂y

[
(cβ − η(τ)y)w

]
= y2η′(t)

2d w,

and for any τ > 0,
−d∂yw(τ, 0) − cβw(τ, 0) = 0, at y = 0.

In particular, sign(Lw) = sign(η′(τ)) = sign(1 − β), so that w is a super solution to problem
(5.7) since 1

2 < β ≤ 1. As a result, by taking λ > 0 large enough8 so that w|τ=0 > w|τ=0 for any
y > 0, we have w > w for any τ > 0 and y > 0.

Considering that η is nonpositive, we can finally write∫ ∞

ξ=0
ξ w(τ, ξ) dξ ≤

∫ ∞

ξ=0
ξ w(τ, ξ) dξ ≤ λ

∫ ∞

ξ=0
ξ e− cβ

d
ξ dξ =: Λ.

We now turn back to (5.9), and obtain from Lemma 5.1 and (5.10) that

∥w(τ, y) − w̃(τ, y)∥L1
y(R+) ≤

∫ τ

s=0

∣∣η(τ − s)
∣∣ 3Λ√

4πds
ds

= 3Λ(1 − β)
(2β − 1)

√
4πd

∫ τ

s=0

1
1

2β−1 + τ − s

1√
s

ds︸ ︷︷ ︸
=:L(τ)

.

8This requires that λ depends on c, d, β, ∥v0∥L∞ and max(supp(v0)).
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It remains to control the convolution L(τ). To achieve this, let us set s = τσ in the integral in
L(τ). This yields

L(τ) =
∫ 1

σ=0

τ
1

2β−1 + τ − τσ

1√
τσ

dσ.

=
∫ 1/2

σ=0

τ
1

2β−1 + τ − τσ

1√
τσ

dσ +
∫ 1

σ=1/2

τ
1

2β−1 + τ − τσ

1√
τσ

dσ.

≤ 2√
τ

∫ 1/2

σ=0

dσ√
σ

+
√

2√
τ

∫ 1

σ=1/2

τ
1

2β−1 + τ − τσ
dσ.

= 2
√

2√
τ

+

√
2 log

(
1 + 2β−1

2 τ
)

√
τ

.

Now using the relation (5.2) between the variables τ and t, namely

τ = 1
2β − 1

[
(1 + t)2β−1 − 1

]
⇐⇒ t =

(
1 + (2β − 1)τ

) 1
2β−1 − 1,

it can be shown that, for any t > 1,

1√
τ

≤

√
(2β − 1)/(1 − 21−2β)

(1 + t)β− 1
2

and log
(

1 + 2β − 1
2 τ

)
≤ (2β − 1) log(1 + t).

As a result, there exists k > 0, depending on c, d, β, ∥v0∥L∞ and max(supp(v0)), such that

∥w(τ, y) − w̃(τ, y)∥L1
y(R+) ≤ k log(1 + t)

(1 + t)β− 1
2
, ∀t > 1. (5.12)

Combining (5.12) and the exponential convergence of w̃(τ, ) toward W (y) = W (0)e− cβ
d

y (see
Theorem 2.1 (ii) with c is replaced by cβ), we reach, up to increasing ℓ,

∥w(τ, y) −W (y)∥L1
y(R+) ≤ ℓ log(1 + t)

(1 + t)β− 1
2
, ∀t > 1. (5.13)

Now making the change of variable y = b′(t)
cβ x in the left-hand-side of (5.13) and recalling that

v(t, x) = b′(t)
cβ w(τ, y) (see (5.1)), we finally obtain∥∥∥∥v(t, x) − b′(t)

cβ
W

(
b′(t)
cβ

x

)∥∥∥∥
L1

x(R+)
≤ ℓ log(1 + t)

(1 + t)
1
2
, ∀t > 1,

which gives the control (2.12) announced in Theorem 2.3 (iii) and concludes the proof.

Acknowledgement S.T. acknowledges support from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant agreement No
865711). M.Z. acknowledges support from the ANR via the project ReaCh ANR-23-CE40-0023-01,
and from the Occitanie region, the European Regional Development Fund (ERDF), and the
French government, through the France 2030 project managed by the National Research Agency
(ANR) ANR-22-EXES-0015.

The authors would like to thank everyone with whom they had the opportunity to discuss this
paper, in particular Thomas Lepoutre, whose insightful advice has marked significant milestones
in advancing this work.

24

http://math.univ-lyon1.fr/homes-www/lepoutre/


The influence of an inward-shifting boundary on the heat equation in half-space

References
[1] M. Alfaro, H. Berestycki, and G. Raoul, The Effect of Climate Shift on a Species

Submitted to Dispersion, Evolution, Growth, and Nonlocal Competition, SIAM Journal on
Mathematical Analysis, 49 (2017), pp. 562–596.

[2] M. Alfaro, F. Hamel, and L. Roques, Propagation or extinction in bistable equations:
The non-monotone role of initial fragmentation, Discrete and Continuous Dynamical Systems
- S, 17 (2024), pp. 1460–1484.

[3] W. C. Allee, Animal Aggregations: A Study in General Sociology, University of Chicago
Press, 1931.

[4] J. Allwright, Exact solutions and critical behaviour for a linear growth-diffusion equation
on a time-dependent domain, Proceedings of the Edinburgh Mathematical Society, 65 (2022),
pp. 53–79.

[5] , Reaction–diffusion on a time-dependent interval: Refining the notion of ‘critical
length’, Communications in Contemporary Mathematics, 25 (2023), p. 2250050.

[6] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in
population genetics, Advances in Mathematics, 30 (1978), pp. 33–76.

[7] D. Bakry, I. Gentil, and M. Ledoux, Analysis and Geometry of Markov Diffusion Op-
erators, vol. 348 of Grundlehren Der Mathematischen Wissenschaften, Springer International
Publishing, Cham, 2014.

[8] H. Berestycki, L. Desvillettes, and O. Diekmann, Can climate change lead to gap
formation?, Ecological Complexity, 20 (2014), pp. 264–270.

[9] H. Berestycki, O. Diekmann, C. J. Nagelkerke, and P. A. Zegeling, Can a
Species Keep Pace with a Shifting Climate?, Bulletin of Mathematical Biology, 71 (2009),
pp. 399–429.

[10] H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with
forced speed I - The case of the whole space, Discrete and Continuous Dynamical Systems,
21 (2008), pp. 41–67.

[11] J. Bouhours and T. Giletti, Spreading and Vanishing for a Monostable Reaction–
Diffusion Equation with Forced Speed, Journal of Dynamics and Differential Equations, 31
(2019), pp. 247–286.

[12] V. Calvez, R. J. Hawkins, N. Meunier, and R. Voituriez, Analysis of a Nonlocal
Model for Spontaneous Cell Polarization, SIAM Journal on Applied Mathematics, 72 (2012),
pp. 594–622.

[13] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John
Wiley & Sons, Jan. 2004.

[14] M. Carrer, R. Dibona, A. L. Prendin, and M. Brunetti, Recent waning snowpack
in the Alps is unprecedented in the last six centuries, Nature Climate Change, 13 (2023),
pp. 155–160.

[15] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons,
2nd edition ed., 2006.

25



Samuel Tréton and Mingmin Zhang

[16] I. Csiszár, Information-type measures of difference of probability distributions and indirect
observations, Studia Sci. Math. Hungar., 2 (1967), pp. 299–318.

[17] L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics,
American Mathematical Society, Providence (Rhode Island), 2nd ed., 2010.

[18] S. Figueroa Iglesias and S. Mirrahimi, Long Time Evolutionary Dynamics of Phenotypi-
cally Structured Populations in Time-Periodic Environments, SIAM Journal on Mathematical
Analysis, 50 (2018), pp. 5537–5568.

[19] , Selection and mutation in a shifting and fluctuating environment, Communications in
Mathematical Sciences, 19 (2021), pp. 1761–1798.

[20] R. A. Fisher, The Wave of Advance of Advantageous Genes, Annals of Eugenics, 7 (1937),
pp. 355–369.

[21] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u + u1+α,
Journal of the Faculty of Science, University of Tokyo, 13 (1966), pp. 109–124.

[22] J. Garnier, L. Roques, and F. Hamel, Success rate of a biological invasion in terms
of the spatial distribution of the founding population, Bulletin of Mathematical Biology, 74
(2012), pp. 453–473.

[23] M.-H. Giga, Y. Giga, and J. Saal, Nonlinear Partial Differential Equations: Asymptotic
Behavior of Solutions and Self-Similar Solutions, Springer Science & Business Media, 2010.

[24] L. Gross, Logarithmic Sobolev Inequalities, American Journal of Mathematics, 97 (1975),
pp. 1061–1083.

[25] A. Kolmogorov, I. Petrovskii, and N. Piskunov, Study of a diffusion equation that
is related to the growth of a quality of matter, and its application to a biological problem,
Moscow University Mathematics Bulletin, 1 (1937), pp. 1–26.

[26] T. Lepoutre, N. Meunier, and N. Muller, Cell polarisation model: The 1D case,
Journal de Mathématiques Pures et Appliquées, 101 (2014), pp. 152–171.

[27] C. Loucks, S. Barber-Meyer, M. A. A. Hossain, A. Barlow, and R. M. Chowd-
hury, Sea level rise and tigers: Predicted impacts to Bangladesh’s Sundarbans mangroves,
Climatic Change, 98 (2010), pp. 291–298.

[28] Y. Malhi, O. L. Phillips, J. Barlow, and C. A. Peres, Ecological responses to El
Niño–induced surface fires in central Brazilian Amazonia: Management implications for
flammable tropical forests, Philosophical Transactions of the Royal Society of London. Series
B: Biological Sciences, 359 (2004), pp. 367–380.

[29] S. Menon, J. Soberón, X. Li, and A. T. Peterson, Preliminary global assessment of
terrestrial biodiversity consequences of sea-level rise mediated by climate change, Biodiversity
and Conservation, 19 (2010), pp. 1599–1609.

[30] S. E. Moore and H. P. Huntington, Arctic marine mammals and climate change:
Impacts and resilience, Ecological Applications: A Publication of the Ecological Society of
America, 18 (2008), pp. s157–165.

[31] F. Otto and C. Villani, Generalization of an Inequality by Talagrand and Links with the
Logarithmic Sobolev Inequality, Journal of Functional Analysis, 173 (2000), pp. 361–400.

26



The influence of an inward-shifting boundary on the heat equation in half-space

[32] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, 1983.

[33] L. Roques, F. Patout, O. Bonnefon, and G. Martin, Adaptation in General Tempo-
rally Changing Environments, SIAM Journal on Applied Mathematics, 80 (2020), pp. 2420–
2447.

[34] J. L. Vázquez, Asymptotic behaviour methods for the Heat Equation. Convergence to the
Gaussian, arXiv.1706.10034, (2018).

27


	Introduction
	Main results
	The sub-critical and critical regimes: 0 <= beta <= 1/2
	The linear regime: beta = 1
	The super-critical regime: 1/2 < beta <= 1

