A Piston to Counteract Diflusion
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Climate change, among other environmental factors, significantly impacts the distribution of biological populations. To better understand how these populations respond to dynamic
external pressures, we propose a new diffusion model in a moving half-space, where the boundary evolves smoothly over time. By imposing a suitable boundary condition at the
boundary, we prevent individuals from leaving the domain, so that the shifting boundary acts as an impermeable wall—a “piston”—that sweeps the individuals it encounters. This
framework leads to an intricate interplay between the diffusion mechanism (which tends to spread the population) and the accumulation of individuals against the boundary.
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Stationary solutions: W(y) = 9 (ii) When § = 1, everything is explicit. Direct estimates provide the convergence.
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4d (iii) Treat 7 t§)3 0, (yw) as a vanishing source term, regarded as a perturbation around the case

(ii) Entropy methods to show the convergence. case B = 1 to apply Duhamel’s principle.




